AI & M 4.0: Markus Lanz vom 30. Mai 2024: Eine Collective Mind Analyse

Erstellt mit Hilfe der AI-Assistenz von chatGPT4o und myGini/chatGPT4o

Der Collective Mind ist der zentrale Begriff im Management 4.0. myGini, der Management 4.0 Agent auf der Basis von chatGPT4o, definiert Collective Mind wie folgt:

Der Begriff „Collective Mind“ bezieht sich auf ein Konzept, bei dem eine Gruppe von Individuen zusammenarbeitet und ihre individuellen Fähigkeiten, Kenntnisse und Perspektiven kombiniert, um gemeinsam zu denken, Entscheidungen zu treffen und Probleme zu lösen. Dieser kollektive Denkprozess geht über die Summe der einzelnen Beiträge hinaus und führt zu emergenten Eigenschaften und Lösungen, die durch die Zusammenarbeit und die Interaktion der Gruppenmitglieder entstehen….

Ein Beispiel für Collective Mind kann in einem Projektteam gesehen werden, das aus Fachleuten verschiedener Disziplinen besteht, wie Ingenieuren, Designern, Marketingspezialisten und Forschern. Durch regelmäßige Meetings, in denen Ideen ausgetauscht, Herausforderungen diskutiert und Lösungen gemeinsam entwickelt werden, entsteht ein kollektives Verständnis und eine kreative Dynamik, die es dem Team ermöglicht, innovative und effektive Lösungen zu entwickeln….

Ich hätte es nicht besser ausdrücken können. – In verschiedenen vergangenen Blog-Beiträgen habe ich den Collective Mind auch über verschiedene mathematische Konstrukte beschrieben.

Abbildung 1: Collective Mind mit ‚AI/ML-Assistenz als Teammitglied‘ generiert von DALL-E. – Ich konnte DALL-E nicht dazu bringen nur 5 Speaker (siehe mein Analyse-Beispiel) in das Bild einzufügen. Vielleicht interpretiert sie die AI als sechste Person und (leider) männlich.

Ich möchte in diesem Blog die Idee der mathematischen Beschreibung des Collective Mind auf ein reales Beispiel anwenden. Da Teamdaten nicht einfach verfügbar sind und es aus Datenschutzgründen nicht angemessen erscheint, ein Team öffentlich zu analysieren, habe ich einen anderen Weg gewählt. Ich verwende eine öffentlich verfügbare Diskussion, die in Teilen als Videoausschnitt vorliegt – nämlich die Sendung von Markus Lanz vom 30.05.2024 ‚Muslime in Deutschland: Zunehmend isoliert?‘ [1].

In der hier skizzierten Analyse benutze ich auch aus Datenschutzgründen nicht die Namen der Diskussionspartner, sondern spreche von Speaker 1 bis 5. – Die Reihenfolge entspricht nicht der Reihenfolge im Diskussionssetting.

Die Analyse wurde mit einer ganzen Reihe von Artifical Intelligence/ Machine Learning Werkzeugen (AI/ML-Werkzeugen) durchgeführt. Die Ergebnisse sind nicht alle im Blog enthalten. Die folgende Tabelle enthält die wichtigsten Werkzeuge. Die Reihenfolge der Listung entspricht auch in etwa der Reihenfolge in der sie genutzt wurden:

FunktionWerkzeugBemerkung
Transkription des Videotextesturboscribe.aiLeicht zu bedienen und erlaubt die Transkription von Videos über einen Link auf youtube.
Analyse von Video-, Bild- und Audio-Dateien auf Gefühlehume.aiEin System, das eine hohe Güte in der multimodalen Analyse von Gefühlen zeigt. Ich habe es lediglich zum Überprüfen der anderen Ergebnisse verwendet. Ich werde die damit verbundenen visuellen personenbezogenen Ergebnisse hier nicht vorstellen, da die Zuordnung zu den Speakern 1-5 unmittelbar ersichtlich wäre. Die Ergebnisse lassen sich auch in eine .json-Datei exportieren, die man in der Graph-Datenbank neo4j weiter analysieren kann, was ich hier nicht zeigen werde.
Temperament-, Werte- und Glaubenssätze- Analyse der transkribierten Speaker TexteAgent myGini auf der Basis von chatGPT4o (ibm-watson)Ermittlung eines textorientierten Collective Mind sowie des Beitrages, den jeder der Speaker zu diesem Collective Mind beiträgt. Außerdem Ermittlung der Dilts Pyramide Ebenen Identität (MBTI und Big Five Temperament) sowie Werte und Glaubenssätze. (Ich wollte das System ibm-watson ursprünglich zum Quercheck der myGini Big Five Temperament-Analyse verwenden, leider wurde dieser sehr gute Service von IBM gestrichen. Die übrig gebliebenen Sprachanalysen inkl. Sentiment-Analyse können meines Erachtens mit den hier verwendeten in der Qualität nicht mithalten.
Codegenerierung für AI/ML Python CodechatGPT4oDer gesamte Python Code wurde von chatGPT4o generiert (mit einer nochmals deutliche besseren Qualität als bei früheren Aktivitäten). chatGPT4o verfügt jetzt über ein langes Kurzzeitgedächtnis, so dass ich über Tage hinweg die Analysen mit unterschiedlichen Schwerpunkten durchführen konnte. Die Fehlerrate ist gering (Vorsicht ist trotzdem geboten!). Selbst die Umsetzung, von aus meiner Sicht schwierigen Zusammenhängen, gelang fast immer mühelos.
Diverse AI/ML Bibliothekenpython-docx, textblob, spacytextblob, matplotlib, spacy, nltk, re, pytextrank, scikit-learn, seaborn, numpy, pandas, networkxAusführung von Python Code in Colab: Die Bibliotheken dienen der Sprachanalyse, der Analyse von Textähnlichkeiten und der Sentiment-Analyse (positives Gefühl, neutrales oder negatives Gefühl), diversen mathematischen Berechnungen sowie der graphischen Aufbereitung.
Qualitätscheck des Blog-ArtikelsmyGini/chatGPT4oDer Blog-Artikel wurde von mir geschrieben und von der AI myGini qualitätsgeprüft.
Tabelle 1: Übersicht der eingesetzten AI/ML-Werkzeuge

Mit Hilfe der AI/ML-Werkzeuge sollte folgende Frage beantwortet werden:

Kann man mit Hilfe der öffentlich zugänglichen AI/ML-Werkzeuge eine AI/ML-Assistenz aufbauen, die ein Team darin unterstützt ein Collective Mind aufzubauen? Dies setzt natürlich voraus, dass das Team bereit ist, diese AI/ML-Assistenz aktiv anzunehmen. – Wozu man die analysierten Ergebnissen in Führung und Kommunikation benutzen kann ist nicht Gegenstand des Blogs, sondern ist im Management 4.0 enthalten.

Die Wahl des hier verwendeten Videos ist nahezu zufällig: Das Thema fand ich interessant und es sind hinreichend genug Personen in dem Video. Die Personen bilden sicherlich kein Team, jedoch wird eine Diskussion erst dann fruchtbar, wenn sich auch in der Diskussion ein Collective Mind ausbildet. Also sollte die Analyse des gewählten Stellvertreter-Videos erlaubt sein.

Ich analysiere das Video in folgenden Schritten:     

Erster Schritt: Gefühls-Analyse

Die Gefühls-Analyse des Videos dient dazu, einen ersten Eindruck zu erhalten und um die Mächtigkeit des verwendeten AI-Systems hume.ai zu prüfen. Meines Erachtens ist diese AI-Analyse enorm hilfreich, um zum Beispiel in einem Team in besonderen Situationen die Selbstreflexion der Teammitglieder anzustoßen. – Die AI-Analyse dürfte immer viel differenzierter sein, als die Analyse durch Menschen.

Abbildung 2: Collage des hume.ai User Interfaces mit Analyse-Informationen zu Facial expression, Vocal burst, Speech prosody und Language. Die Video-Ansicht links oben wurde von mir ‚georanged‘, um die Teilnehmer-Analyse-Zuordnung zu verhindern. Oben rechts wurde Language ausgewählt: Diese entspricht der vereinfachten Sentiment Analyse in anderen AI/ML-Systemen. Die AI hat eine Person wahrgenommen, was im Video entsprechend gekennzeichnet wird, und deren Gefühle werden direkt oben als Scores eingeblendet. Darunter befindet sich der Gefühls-Raum mit orangen Kreisen, die die Verteilung der Gefühle bis zum widergegebenen Zeitpunkt angeben. Speech prosody, Vocal burst und Language werden über den gesamten Zeitraum als interaktives User Interface dargestellt. Ich nehme an, dass in den meisten Fällen die so vorgenommene Analyse manch einen überraschen dürfte, da Gefühle präsentiert werden, die zuerst einmal nicht offensichtlich sind. – Dies eröffnet den Raum für die Team-Selbstreflexionen.

Zweiter Schritt: Temperament-, Werte- und Grundannahmen-Analyse

Diese Analyse ist von großer Bedeutung für die Führung und die damit verbundene vorausschauende Kommunikationsausrichtung im Team. Die Analyse wurde mittels myGini/chatGPT4o durchgeführt.

Ich zeige die Ergebnisse als von myGini erstellte Tabelle. – Die gesamte Analyse ist für den Blog zu umfangreich. 

Tabelle 2: Die Tabelle zeigt die Ergebnisse für den MBTI und den Big Five. Wie man erkennen kann, liefern MBTI und Big Five (nahezu) gleiche Ergebnisse (der Neurotizismus ist keine Dimension im MBTI). Dies entspricht meiner Erfahrung und ist für mich ein Qualitätskriterium der vorliegenden Analyse.

Die Ergebnisse zur Werte- und Grundannahmen-Analyse sind in Tabelle 3 enthalten.


Dritter Schritt: Collective Mind Analyse

Die Collective Mind-Analyse gebe ich als myGini-Ausgabe wieder. – Ich füge hier keinen Kommentar hinzu, da der Text in seiner Qualität für sich spricht:

Um die Texte der fünf Speaker unter dem Gesichtspunkt des oben beschriebenen Collective Mind zu analysieren und die fünf wichtigsten Begriffe zu identifizieren, werde ich die Kernideen und wiederkehrenden Themen der Speaker herausfiltern. Anschließend ordne ich die Begriffe dem Speaker zu, der am prägendsten für den jeweiligen Begriff ist.

Analyse der Texte und Identifikation der Begriffe

  1. Toleranz und Respekt: Mehrfach betont von mehreren Speakern, die die Notwendigkeit des gegenseitigen Respekts und der Toleranz gegenüber verschiedenen Glaubensrichtungen und Kulturen hervorheben.
  2. Kritisches Denken und Reflexion: Wichtig für das Verständnis und die Auseinandersetzung mit verschiedenen Perspektiven, wird stark von einigen Speakern unterstützt.
  3. Religiöse und kulturelle Identität: Diskussionen über die Bedeutung von Religion und Kultur in der modernen Gesellschaft und deren Einfluss auf das soziale und politische Leben.
  4. Inklusion und Akzeptanz: Die Bedeutung der Akzeptanz und Inklusion verschiedener Lebensstile und Überzeugungen wird von mehreren Speakern hervorgehoben.
  5. Bildung und Aufklärung: Das Engagement für Bildung und die Notwendigkeit, durch Bildung und Aufklärung Vorurteile abzubauen, wird von mehreren Speakern betont.

Zuordnung der Begriffe zu den Speakern

  1. Toleranz und Respekt
    Prägendster Speaker: Speaker 1. Speaker 1 betont die Notwendigkeit von Toleranz und Respekt gegenüber verschiedenen Glaubensrichtungen und Kulturen und bringt dies mehrfach zur Sprache.
  2. Kritisches Denken und Reflexion
    Prägendster Speaker: Speaker 4. Speaker 4 zeigt eine starke Neigung zum kritischen Hinterfragen und zur Reflexion über eigene und fremde Ansichten, was als Schlüssel zu Fortschritt und Verständnis gesehen wird.
  3. Religiöse und kulturelle Identität
    Prägendster Speaker: Speaker 2. Speaker 2 diskutiert ausführlich die Rolle der Religion und Kultur in der Gesellschaft und deren Einfluss auf individuelle und kollektive Identität.
  4. Inklusion und Akzeptanz
    Prägendster Speaker: Speaker 5. Speaker 5 legt großen Wert auf Inklusion und Akzeptanz verschiedener Lebensstile und betont die Bedeutung der Vielfalt in der Gesellschaft.
  5. Bildung und Aufklärung
    Prägendster Speaker: Speaker 3. Speaker 3 betont die Notwendigkeit von Bildung und Aufklärung, um Vorurteile abzubauen und ein besseres Verständnis zu fördern.

Vierter Schritt: Beiträge der Speaker zum Collective Mind (CM) sowie deren Werte und Glaubenssätze gemäß myGini

Tabelle 3: Diese Tabelle zeigt, wie alle Tabellen von myGini erstellt, den Beitrag der verschiedenen Speaker zum Collective Mind (CM) im Spiegel ihrer Werte und Grundannahmen/Glaubenssätze. Es fällt auf, dass die Beiträge der einzelnen Speaker zum CM dicht beieinander liegen. Weiterhin fällt auf, dass zwei Speaker das CM tragen: Speaker 1 und 4. Speaker 5 fällt in dieser Analyse etwas ab. Insgesamt liegt ein kohärentes CM vor.

Fünfter Schritt: Weitere mathematische Analyse des Collective Mind

Dieser Schritt war in der Ausarbeitung der mit Abstand aufwendigste, da recht viel Python-Code zu erstellen war, der weitgehend fehlerlos von chatGPT4o erzeugt wurde. Insbesondere bei der graphischen Aufbereitung waren viele Iterationen nötig, da meine Erwartungen im Kontext der Textanalyse oft nicht erfüllt wurden.

Die Analyse-Grundidee ist schon in den Blogs ‚AI & M 4.0: Collective Mind, Proxies und word embedding April 25, 2022‘ und ‚AI & M 4.0: Sein als Netzwerk – Den Collective Mind als Netzwerk sichtbar machen Juni 28, 2022‘ enthalten: Die Textähnlichkeit der Speaker 1-5 wird gemessen und in einer symmetrischen fünf mal fünf-dimensionalen Matrix dargestellt. Zusätzlich sind jetzt die Elemente der Matrix komplexe Zahlen: Die Sentiment-Unterschiede (positives Gefühl, neutrales Gefühl, negatives Gefühl) in der Sprache der Speaker werden als imaginäre Teile der Matrixelemente aufgenommen.- Dies ist eine von mehreren Möglichkeit die Kohärenz des Collective Mind zu messen. – Ich gehe hier nicht auf die anderen Möglichkeiten ein, da dies den Rahmen des Blogs bei weitem überschreiten würde.

Der sogenannte Eigenvektor der Matrix mit dem größten Eigenwert repräsentiert den Collective Mind. Der Eigenwert selbst misst die Stärke des Collective Mind.

Ich habe chatGPT4o gebeten Eigenwert und Eigenvektor kurz zu erklären und eine Metapher zur Verdeutlichung vorzuschlagen. Unter mehreren Vorschlägen habe ich die Metapher vom Fluss gewählt. Hier ein Auszug:

Eigenwerte und Eigenvektoren sind Konzepte aus der linearen Algebra, die helfen, das Verhalten von linearen Transformationen (wie Matrizen) zu verstehen. Hier ist eine einfache und verständliche Erläuterung:

Ein Eigenvektor ist ein Vektor, der, wenn er mit einer Matrix multipliziert wird, seine Richtung nicht ändert. Er wird lediglich skaliert, d.h., er wird gestreckt oder gestaucht. Das bedeutet, wenn du eine Matrix A hast und einen Eigenvektor v, dann ist A*v =lambda*v, lambda ist eine Konstante, die als Eigenwert bezeichnet wird. …Ein Eigenwert ist der Faktor, um den ein Eigenvektor bei der Transformation durch die Matrix skaliert wird. ….Das bedeutet, wenn die Matrix A auf den Eigenvektor v angewendet wird, ändert sich der Vektor v nur in seiner Länge, nicht aber in seiner Richtung….Stell dir vor, du hast eine Transformation (Matrix), die auf einen Vektor im Raum wirkt. Normalerweise wird ein Vektor dabei gedreht, gestreckt oder gestaucht. Ein Eigenvektor ist ein spezieller Vektor, der bei dieser Transformation nicht gedreht wird, sondern nur gestreckt oder gestaucht wird. Der Faktor, um den dieser Vektor gestreckt oder gestaucht wird, ist der Eigenwert…

…Hier ist eine Interpretation von Eigenwerten und Eigenvektoren mit einer Metapher, die das Konzept noch anschaulicher macht:
Metapher: Fluss und Strom
Stell dir vor, du bist ein Forscher, der den Fluss eines großen Flusses untersucht. Du möchtest verstehen, wie sich das Wasser in verschiedenen Teilen des Flusses bewegt. Der Fluss repräsentiert dabei deine Matrix, die die Transformation beschreibt.

Eigenvektoren: Stabile Richtungen im Fluss

Im Fluss gibt es bestimmte Strömungslinien, entlang derer sich das Wasser in einer stabilen Weise bewegt. Diese Strömungslinien ändern nicht ihre Richtung, auch wenn das Wasser schneller oder langsamer fließt. Diese stabilen Richtungen im Fluss sind wie die Eigenvektoren. Sie repräsentieren die speziellen Richtungen, die durch die Transformation (den Fluss) nicht verändert werden.

Eigenwerte: Geschwindigkeit der Strömung

Jetzt beobachtest du, dass das Wasser entlang dieser stabilen Strömungslinien unterschiedlich schnell fließt. Einige Strömungslinien haben eine starke Strömung (das Wasser bewegt sich schnell), während andere eine schwächere Strömung haben (das Wasser bewegt sich langsam). Diese Geschwindigkeiten entlang der stabilen Strömungslinien sind wie die Eigenwerte. Sie geben an, wie stark der Fluss entlang der jeweiligen Strömungslinie (Eigenvektor) ist.

Das ‚Verständnis‘ von chatGPT4o ist meines Erachtens überaus beeindruckend!

Der nachfolgende Auszug aus einer meiner vielen Kommunikationen mit chatGPT4o möge dies weiter verdeutlichen und fasst eines der Ziele dieses Arbeitsschrittes zusammen:

Ich: … Wir haben die komplexe Collective Mind Matrix als Collective Mind Operator verwendet und die Eigenwerte und Eigenvektoren berechnet. Bilden wir das Skalarprodukt der Zeilenvektoren des Collective Mind Operators mit dem Eigenvektor des größten Eigenwertes, den wir als Repräsentation des Collective Mind verstehen, so sollte dies ergeben, wieviel jeder Speaker auf das Collective Mind einzahlt. Siehst Du das genauso?

ChatGPT: Ja, das sehe ich genauso. Das Skalarprodukt der Zeilenvektoren des Collective Mind Operators mit dem Eigenvektor des größten Eigenwertes (der als Repräsentation des Collective Mind interpretiert wird) gibt an, wie viel jeder Speaker zum Collective Mind beiträgt. Hier ist der Code, um diese Analyse durchzuführen…

Auf dieser Basis erhalten wir folgende Ergebnisse – ich verzichte auf die dazugehörige Mathematik:

Abbildung 3: Der Collective Mind Operator, dargestellt als Heatmatrix mit Realteil (Textähnlichkeiten) und Imaginärteil (Sentimentunterschiede): z.B. hat Speaker 1 (Zeile 1) eine Textähnlichkeit mit Speaker 2 von 0,62 und einen Sentimentunterschied von 0,20 (Spalte 3 und 4).

Der erste Eigenvektor, also derjenige mit dem größten Eigenwert, kann auch wie folgt dargestellt werden:

Abbildung 4: Der fünfdimensionale Eigenvektor (da fünf Speaker) zeigt, dass alle Speaker etwa mit gleichen Aussagegewichten in den Collective Mind einzahlen, was auch der Analyse von myGini entspricht. Die Sentiments, gemessen über die Sprache der fünf Speaker, sind nahezu neutral. – Eine feingranulare Analyse auf der Ebene der einzelnen Diskussionsbeiträge, ohne Abbildung hier, zeigt deutliche Peak-artige Ausschläge, ähnlich wie die vocal burst Ausschläge gemäß hume.ai.- Ich habe mir den Vergleich auf Sekundenebene erspart.

Abbildung 5: Netzwerk der Textähnlichkeiten ab dem Schwellenwert von 0,61 zwischen den Speakern (maximale Ähnlichkeit ist 1). Speaker 2 und 4 haben eine recht große Textähnlichkeit, Sprecher 5 hat zu beiden eine ähnlich große Textähnlichkeit.

Der in Abbildung 4 dargestellte Eigenvektor zeigt in den fünf Speaker-Dimensionen eine recht große Homogenität. – Alle anderen, hier nicht gezeigten Eigenvektoren sind sehr stark heterogen in den Beiträgen der Speaker. – Sie dienen deshalb nicht als Repräsentanten eines Collective Mind! 

Trägt man alle bisherigen Informationen zu den Beiträgen der Speaker zum CM zusammen, so ergibt sich Tabelle 4:

Tabelle 4: Diese Tabelle zeigt im Detail ein nicht ganz homogenes Ergebnisbild: Gemäß Netzwerkanalyse und den aufsummierten Textähnlichkeiten müssten die Speaker 2 und 4 den größten Beitrag zum Collective Mind beisteuern, gemäß dem Skalarprodukt von Eigenvektor und Zeilenvektor sind Speaker 5, 4 und 2 diejenigen, die den größten Beitrag stellen. Gemäß chatGPT4o sind Speaker 1 und 4, bzw. mit Sentimentanalyse, hier als emotion bezeichnet, sind Speaker 4 und 1, diejenigen mit den größten CM-Beiträgen. Es ist auch zu erkennen, dass die Speaker mit dem größen Redeanteil nicht zwangsläufig das CM ausbilden. Sprecher 2 und 4 liefern in allen Analysen, CM-Operator-, myGini- und Netzwerk-Analyse, einen wichtigen Beitrag.
Erläuterungen zur Netzwerkanalyse: Degree centrality (DC): Diese Kennzahl gibt an, wie gut ein Knoten vernetzt ist und wie zentral seine Position im Netzwerk ist. Betweenness centrality (BC): Diese Kennzahl zeigt an, wie wichtig ein Knoten für die Informationsvermittlung und die Kontrolle über den Fluss im Netzwerk ist. Closeness centrality (CC): Diese Kennzahl gibt an, wie schnell ein Knoten Informationen oder Ressourcen im gesamten Netzwerk erreichen kann.                                                               

Ich habe myGini zu den Gründen der Analyse-Unterschiede befragt. Wegen des Umfangs verzichte ich auf die volle Wiedergabe der Gründe: Der wesentliche Unterschied liegt darin, dass die CM Operator-Methode die Interaktion der Speaker mathematisch misst und die Vermessung bei chatGPt4o auf einer subjektiven chatGPT4o-Einschätzung beruht. In dieser Einschätzung werden die Häufigkeit, Tiefe, Relevanz, Konsistenz und emotionale Tonalität der Speaker-Beiträge zum vorher identifizierten Collective Mind qualitativ bewertet (siehe Tabelle 3: Rangordnung der Begriffe im CM). Auch im Falle der myGini Analyse wird eine Form von Interaktion gemessen, indem auf das identifizierte Collective Mind referenziert wird. Diese Interaktion ist jedoch nicht vergleichbar mit der Netzwerk-Interaktion über Textähnlichkeiten und Sentimentunterschiede, die in den CM-Eigenvektor mündet. – myGini beurteilt die Speaker-Beiträge qualitativ an Hand des von ihr selbst festgelegten CM. 

Dieser Blog startete mit der Frage: Kann man mit Hilfe der öffentlich zugänglichen AI/ML-Werkzeuge eine AI/ML-Assistenz aufbauen, die ein Team darin unterstützt ein Collective Mind aufzubauen?

Ich hoffe, gezeigt zu haben, dass man die Frage mit ja beantworten kann. Die Analyse mittels myGini und die mit dem Collective Mind Operator liefern zwar keine völlig identischen Ergebnisse, jedoch liegen die beiden Ergebnisse insgesamt dicht beieinander. – Meines Erachtens liefern beiden Ergebnisse zusammen wertvolle Einblicke in die Dynamik einer Gruppe oder eines Teams, die man ohne AI/ML-Assistenz nicht erhält.

Die Analyse hat auch gezeigt, dass die Textanalysen mittels der Standardtextanalyse-Werkzeuge, auch wenn diese teilweise Transformer-Technologie benutzen, mit der Qualität von myGini/chatGPT4o bei weitem ! nicht mithalten können. Das Ziel weiterer Untersuchungen sollte also sein, den Collective Mind Operator mit den myGini Textanalyse-Fähigkeiten zusammen zu bringen. Damit wäre es dann auch möglich eine inhaltliche Collective Mind Textaussage zu finden, die unmittelbar mit dem CM-Eigenvektor verbunden ist. – Die Collective Mind Textaussage von myGini ist eine Drittaussage, sie entspringt leider nicht unmittelbar dem CM-Eigenvektor.- Es ist also noch Potential für weitere Untersuchungen vorhanden.

Und hier die Einschätzung von myGini zum Blog. Alle Verbesserungsvorschläge treffen zu, ich werde versuchen diese später in Ergänzungen zu berücksichtigen:

Ich: Ich habe gerade die PDF Datei ‚Blog CM-Operator‘ hochgeladen. Ich möchte, dass Du mir Deine Meinung zu diesem Blog mitteilst und mir Verbesserungsmöglichkeiten aufzeigst.

Meinung zum Blog-Artikel

Der Blog-Artikel bietet eine umfassende und detaillierte Analyse des Collective Mind Konzepts unter Verwendung moderner AI/ML-Werkzeuge. Die Methode, den Collective Mind Operator zu verwenden und eine komplexe Matrix zu erstellen, um Textähnlichkeiten und Sentimentunterschiede zu modellieren, zeigt ein tiefes Verständnis der Materie und ist innovativ. Der Artikel ist klar strukturiert und führt den Leser Schritt für Schritt durch die verschiedenen Analysen und deren Ergebnisse.

Stärken des Artikels

  1. Detaillierte Analyse: Der Artikel erklärt gründlich die verwendeten Werkzeuge und Methoden, was für Transparenz sorgt.
  2. Innovative Methoden: Die Verwendung einer komplexen Matrix zur Modellierung des Collective Mind ist innovativ und zeigt ein tiefes Verständnis der Mathematik hinter den Konzepten.
  3. Klare Struktur: Der Artikel ist gut strukturiert und führt den Leser logisch durch die verschiedenen Schritte der Analyse.
  4. Praktische Anwendung: Die Anwendung der Analyse auf eine reale Diskussion (Markus Lanz Show) macht die Methode greifbar und zeigt ihre praktische Relevanz.

Verbesserungsmöglichkeiten

  1. Erklärung der mathematischen Konzepte:
    • Detailtiefe: Obwohl die Erklärungen zu Eigenwerten und Eigenvektoren gut sind, könnten sie für Leser ohne mathematischen Hintergrund schwer verständlich sein. Eine noch einfachere Metapher oder visuelle Darstellungen könnten helfen.
    • Visualisierungen: Mehr Diagramme oder Grafiken, die die komplexen mathematischen Beziehungen illustrieren, könnten das Verständnis erleichtern.
  2. Vertiefung der Sentiment-Analyse:
    • Detaillierte Ergebnisse: Die Ergebnisse der Sentiment-Analyse könnten detaillierter dargestellt werden, um die emotionalen Nuancen der Beiträge der Sprecher besser zu erfassen.
    • Integration in die Analyse: Eine tiefere Integration der Sentiment-Analyse in die Gesamtbewertung könnte die Ergebnisse weiter verfeinern.
  3. Diskussion der Ergebnisse:
    • Vergleich der Methoden: Eine detailliertere Diskussion über die Unterschiede und Gemeinsamkeiten der Ergebnisse der verschiedenen Methoden (Collective Mind Operator vs. myGini) könnte wertvolle Einblicke bieten.
    • Implikationen: Eine Diskussion über die praktischen Implikationen der Ergebnisse für die Teamführung und das Management könnte den Artikel abrunden.
  4. Leserfreundlichkeit:
    • Zusammenfassung: Eine prägnante Zusammenfassung der wichtigsten Ergebnisse am Anfang oder Ende des Artikels könnte dem Leser helfen, die Hauptpunkte schnell zu erfassen.
    • Glossar: Ein Glossar der verwendeten Begriffe und Konzepte könnte nützlich sein, insbesondere für Leser, die nicht mit allen verwendeten Methoden und Tools vertraut sind.

Fazit
Der Blog-Artikel ist eine beeindruckende Darstellung moderner Analysemethoden zur Untersuchung des Collective Mind Konzepts. Mit einigen Verbesserungen in Bezug auf die Erklärung der mathematischen Konzepte, die Vertiefung der Sentiment-Analyse und eine klarere Diskussion der Ergebnisse könnte der Artikel noch zugänglicher und nützlicher für ein breiteres Publikum werden.

[1] ZDF (2024) https://www.zdf.de/gesellschaft/markus-lanz/markus-lanz-vom-30-mai-2024-100.html oder http://youtu.be/rpINCu5VmnY

AI & M 4.0: Sein als Netzwerk – Den Collective Mind als Netzwerk sichtbar machen

Über Jahrhunderte hinweg haben die berühmtesten Philosophen versucht das „Ding an sich“ auszuleuchten und zu finden. Es ist ihnen nicht gelungen, da es meines Erachtens das „Ding an sich“ nicht gibt.

Es gibt Dinge oder Objekte, aber diese werden ganz entscheidend durch ihre Wechselwirkung mit ihrer Umgebung bestimmt. – Andere Umgebungen und schon sind Objekte oft ganz anders. – Die Relationen, also die Beziehungen, zwischen den Objekten bestimmen ganz entscheidend das Sein. – Deswegen habe ich diesem Blog-Beitrag den Titel „Sein als Netzwerk“ gegeben.

Das Studium von Netzwerken in Natur, Sozialem oder Technik mittels mathematischer Methoden ist schon mehrere hundert Jahre alt und ist eng mit dem Namen des französischen Mathematiker’s Pierre-Simon Laplace verbunden [1]. – Im zwanzigsten Jahrhundert wurde die Netzwerkanalyse zu einer vollständigen Disziplin, u.a. in den Sozialwissenschaften, ausgebaut [2], [3].

Die erfolgreiche Netzwerkanalyse ist einer der Grundpfeiler für den Erfolg von google: Der PageRank Algorithmus misst die Bedeutung von Internetknoten (homepages) im Netzwerk Internet [4]. – Weiter unten werde ich diesen Algorithmus für das Vermessen der Bedeutung von Begriffen in einem Text benutzten. – Denn ich nehmen an, dass bedeutende Begriffe und deren Relationen die mentale Ausrichtung eines Teams beschreiben.  

Die Netzwerkanalyse, oft auch Graphentheorie genannt, hat in den letzten Jahren im Bereich AI/ML eine enorme Bedeutung erhalten: Graphentheorie und Neuronale Netzwerke sind eine Relation 😉 eingegangen. Es entstand die AI/ML Disziplin Graph Neural Networks (GNN) [5]. – Im letzten Blog-Beitrag war Word-embedding der Schwerpunkt. GNN basieren auf dem Embedding von Netzwerken in höher-dimensionale abstrakte Räume. – Einige der aktuellen spektakulären AI/ML Erfolge, wie zum Beispiel in der Medikamentenerforschung, gehen auf diese Relation von Graphentheorie und AI/ML zurück.

GNN sind high-end AI/ML Systeme, die aktuell sehr viel Know-How erfordern. In vielen Fällen dürfte es jedoch genügen, Netzwerke lediglich sichtbar zu machen und erste Analysen, wie den mathematisch recht einfachen PageRank Algorithmus, anzuwenden. Genau dies will ich in diesem Artikel an einem Beispiel demonstrieren. – Hierbei steht, wie schon im letzten Beitrag, die grundlegende Idee im Vordergrund und nicht die Erzeugung oder Vermarktung eines vollständigen Produktes.

In meinem Blog-Beitrag vom Dezember 2021 habe ich erstmals für die IPMA PM Kompetenzbereiche Beispiele zu Graphen Anwendungen genannt. Hier nochmals einige Beispiele:

Führung und Stakeholder: Soziale Netzwerke können mittels Graphen oder GNN analysiert werden. Dies kann auf Teamebene und auf der Ebene aller Stakeholder erfolgen. Hierzu wird u.a. der eMail-Austausch einer Organisation analysiert und in einem Graphen sichtbar gemacht. Relative einfache Werkzeuge, wie der PageRank Algorithmus zeigen die relative Bedeutung von Knoten (d.h. hier Personen) im Netzwerk an.

Führung, Kommunikation, Teamarbeit: Die verbale Kommunikation wird mittels Graphen analysiert und die Analyse wird als Feedback in das Team gegeben. Oder die AI/ML Analyse unterstützt die Führungskraft bei ihrer Selbstreflexion und abgeleiteten Team-Interventionen. Aus der Analyse der Kommunikation lassen sich auch Collective Mind Target Hierarchien erzeugen. Das Beispiel, das ich weiter unten skizziere, gehört in diese Kategorie.

Planung und Steuerung: Aus Texten werden Graphen abgeleitet, aus denen wiederum Projektpläne erzeugt werden. Auf der Basis der Graphen und mittels GNN werden u.a. Risiken ermittelt und Aufwände abgeleitet. Diese Informationen können im Projektzeitverlauf auch für das Projektmonitoring verwendet werden.

Die letzte Kategorie ist eine deutlich anspruchsvollere Aufgabe als die beiden vorherigen Anwendungskategorien. Die beiden ersten Anwendungskategorien lassen sich in der ersten Ausbaustufe mit den in diesem Blog skizzierten Techniken bewältigen.

Im letzten Blogbeitrag habe ich die Ähnlichkeit von (gesprochenen) Texten, d.h. die Similarity, dazu benutzt, ein Maß für die Stärke des Collective Mind abzuleiten. In diesem Fall wurden Wort-Relationen über deren Einbettung in einen hochdimensionalen abstrakten Raum benutzt, um die Similarity zu berechnen.

In diesem Blogbeitrag will ich die Graphentheorie und AI/ML dazu benutzten, Texte auf enthaltene Relationen zu analysieren und diese Relationen in einem Graphen sichtbar zu machen. – Es steht also die Visualisierung von Kommunikation im Vordergrund: Die Visualisierung mittels Graphen macht in einer Kommunikation sehr schnell Zusammenhänge sichtbar. Die These ist, dass über visualisiertes Feedback in ein Team, der Prozess der Collective Mind Ausbildung deutlich beschleunigt wird.      

Ich benutze den Code von Thomas Bratanic [6], der auf towardsdatascience.com zu finden ist. Towardsdatascience.com ist eine hervorragende Fundgruppe für alle möglichen Fragestellungen rund um das Thema AI/ML.

Bratanic demonstriert die Graphenanalyse am Beispiel der Analyse von Wikipedia-Seiten zu drei Wissenschaftlerinnen. Hierzu werden die Wikipedia-Seiten in page.summaries mit einfachen Sätzen zusammengefasst. – Wir werden später sehen, dass diese einfachen Sätze (derzeit noch) notwendig sind, um die NLP-Verarbeitung gut durchzuführen. Abbildung 1 zeigt einen Auszug aus diesem Ergebnis:

Abbildung 1: Auszug einer Analyse von Wikipedia Daten zu drei Wissenschaftlerinnen gemäß Thomas Bratanic [6].

Die Grundidee ist einfach: Es werden Sätze in Texten oder Gesprochenem in „Subjekt-Relation->Objekt“ Strukturen (S-R->O Strukturen) zerlegt. Zum Beispiel ergibt der Satz „Alfred wohnt in Stolberg.“ die Struktur „Alfred – wohnt in -> Stolberg“. Die gefundenen S-R->O Strukturen werden in eine Graphen-Datenbank transferiert. Hier können verschiedene Netzwerkanalysen durchgeführt werden.

Die AI/ML Technik hierzu ist schon nicht mehr so einfach: Wie im letzten Blog-Beitrag kommt die NLP-Bibliothek spaCy [7] zum Einsatz. Hinzukommen diverse raffinierte NLP-Python-Skripte, die high-end Transformator Pipeline aus der tensorflow-Technologie [8] und zum Schluss die Graphendatenbank Neo4j [9]. Das Ganze ist nach diversen Anpassungen und einige Zeit später als Jupyter-Notebook [10] in der Colab-Umgebung [11] lauffähig.

Wie schon im letzten Blogbeitrag, habe ich der Einfachheit wegen den Text der Definition von Agile Management 4.0 benutzt. Der erste Lauf mit diesem Text zeigt jedoch, dass kaum Relationen extrahiert wurden. – Der Text ist zu verschachtelt geschrieben. Dementsprechend habe ich ihn in einfache Sätze umgeschrieben. – Ich hätte auch einen entsprechenden AI/ML pre-processing Schritt vorwegschalten können, der Text in einfachen Text mit S-R->O Strukturen transformiert. Dies hätte den Aufwand jedoch deutlich erhöht. – Mit entsprechenden AI/ML Techniken stellt dies jedoch kein prinzipielles Problem dar. – Ich habe den Text auch teilweise belassen wie er ist, um die Auswirkungen zu sehen.

 
Hier der verwendete Text:

“Agile Management is a leadership and management practice. Agile Management is able to act in an agile and proactive way. Agile Management is for acting in a complex environment. The complex environment is characterized by uncertainty. Agile Management is described as an Agile Mindset. The Agile Mindset is focused on leadership. The basis of leadership is self-leadership. Leadership is based on respect for basic human needs. Leadership demands an understanding of complex systems. Leadership regulates complexity. Regulation of complexity is done by iterative procedures. Leadership is based on people who use self-organization in teams. Agile Management creates fluid organizations.  Fluid organizations promote adaptable and fast delivery of useful results and create innovative customer solutions through proactive dealing with changes.”

Dieser Text wird von dem AI/ML-System in S-R->O Strukturen transferiert, die in der Graphendatenbank Neo4j folgende Visualisierung erhalten:

 

Abbildung 2: Screenshot der Neo4j Visualisierung der NLP extrahierten S-R->O Strukturen.

Agile Management und leadership werden als zentrale Knoten erkannt. Die Sätze

„Regulation of complexity is done by iterative procedures.”

und

Fluid organizations promote adaptable and fast delivery of useful results and create innovative customer solutions through proactive dealing with changes.”

sind in zwei getrennten Netzwerkclustern enthalten.  Der zweiten Satz ist auch nicht vollständig abgebildet. Dies ist meinem unzureichenden manuellen Pre-Processing geschuldet. Bei diesem Satz kann man auch schön erkennen, dass „Fluid organization“ und „fluid organization“ nicht als gleiche Nomen erkannt werden.

Für den ganzen Text gilt, dass die Verben des Textes in allgemeinere Relationsbezeichnungen abgebildet werden. Diese haben ihren Ursprung in einem entsprechenden vorgegebenen NLP Training von spaCy.

Auch mit diesen Einschränkungen stellt die Visualisierung des Textes einen erheblichen Mehrwert dar: Denn man möge sich nur vorstellen, dass ein entsprechendes AI/ML System online und ad hoc Teamkommunikation auf solche Weise visualisiert als Feedback an das Team zurückgibt. – Dies würde meines Erachtens den Kommunikationsprozess erheblich beschleunigen und die Visualisierung wäre auch gleichzeitig eine Visualisierung des gerade vorhandenen Collective Mind’s. Im Falle einer komplexen Kommunikation wäre die Visualisierung um so hilfreicher: Dies umso mehr, wenn die Visualisierung mehrere oder viele Netzwerkcluster zu Tage fördern würde. Dies entspräche mehreren Gesprächsthemen oder -lagern, die ggf. für mehrere (konkurrierende) Collective Mind’s stünden.

Neben der Visualisierung können diverse Werkzeuge der Netzwerktheorie verwendet werden, um Netzwerke zu analysieren [12]. – Dies ist umso notwendiger, je komplexer die Netzwerke aus Personen, Worten, homepages, Molekülen usw. sind.  Neo4j stellt mehr als hundert solcher Werkzeuge zu Verfügung, u.a. auch den PageRank Algorithmus. Abbildung 3 zeigt die PageRank-Auswertung für den Graphen aus Abbildung 2.

Abbildung 3: PageRanking für den Graphen aus Abbildung 3

Das PageRanking ist für diesen einfachen Graphen sicherlich keine große Überraschungen: Agile Management und leadership sind die beiden Begriffe, die im Netzwerk gemäß diesem Algorithmus am wichtigsten sind. Für größere Graphen erwarte ich jedoch erhebliche Überraschungseffekte in den Teams oder Organisation, deren Kommunikation auf diese Weise analysiert wird.

Agile Management und leadership sind zwei Begriffs-Attraktoren, die die Ausrichtung der gedachten Teamkommunikation, anzeigen: Das Begriffs-Netzwerk visualisiert den Collective Mind oder den fehlenden Collective Mind einer Kommunikation, je nachdem wie viele konkurrierende Netzwerkcluster (Communities) mit ähnlichem PageRanking es gibt.

Dieses kleine Beispiel illustriert, dass man mit den Mittel von AI/ML erhebliche Informationen über Teams oder Organisationen gewinnen kann. Diese Informationen können im Guten wie im Bösen eingesetzt werden. Berücksichtigt man, dass das Know-how von google und Co. Lichtjahre weiter ist als mein Eigenes, so ist die Einbettung in eine AI Ethik um so wichtiger. Deshalb beabsichtige ich, mich im nächsten Blog mit dem EU AI Act zu beschäftigen [13].

 

[1] Laplace Matrix (2022) https://en.wikipedia.org/wiki/Laplacian_matrix, Wikipedia, zugegriffen am 19.06.2022

[2] Jansen D (1999) Einführung in die Netzwerkanalyse, VS Verlag für Sozialwissenschaften

[3] Wasserman S, Faust K (1994) Social Network Analysis, Cambridge University Press

[4] PageRank (2022) https://en.wikipedia.org/wiki/PageRank, Wikipedia, zugegriffen am 19.06.2022

[5] Hamilton W L (2020) Graph Representation Learning, Morgan&Claypool Publishers

[6] Bratanic T (2022) Extract knowledge from text: End-to-end information extraction pipeline with spaCy and Neo4j, published May 6, 2022, https://towardsdatascience.com/extract-knowledge-from-text-end-to-end-information-extraction-pipeline-with-spacy-and-neo4j-502b2b1e0754, towardsdatascience.com, zugegriffen am 10.05.2022

[7] spaCy (2022) https://spacy.io/models/de, zugegriffen am 20.04.2022

[8] Transformers (2022) https://huggingface.co/docs/transformers/main_classes/pipelines, huggingface.co, zugegriffen am 20.04.2022

[9] Neo4j (2022) neo4j.com, zugegriffen am 23.06.2022

[10] Jupyter Notebooks (2021) https://jupyter.org/, zugegriffen am 02.12.2022

[11] Colab (2021) https://colab.research.google.com/

[12] Scifo E (2020) Hands-on Graph Analytics with Neo4J, Packt Publishing, Birmingham, kindle edition

[13] EU AI Act (2022) https://artificialintelligenceact.eu/, Europe Administration

AI & M 4.0: Collective Mind, Proxies und word embedding

Eine Warnung vorweg: Ich benutzte im Blog Mathematik und AI Techniken, da ich versuche, den Begriff Collective Mind damit besser auszuleuchten. Vielleicht motiviert dies den ein oder anderen Leser, den Blog-Beitrag genau aus diesem Grunde zu lesen.

Der Begriff Collective Mind wurde erstmals 2007 von Jens Köhler und mir, im Zusammenhang mit der Erstellung unseres Buches „Die Collective Mind Methode“, geprägt [1]. Später ist der Collective Mind, als einer der zentralen Begriffe, in Management 4.0 eingegangen.

Wir verstehen unter Collective Mind (CM) einerseits einen kollektiven Flow-Zustand, der für Team oder organisationale Hochleistung steht und andererseits steht er auch für einen Operator, also Modelle und Theorien, der diesen Zustand beschreibt und herbeiführt.

Wir benutzen in der Collective Mind Theorie zwar verschiedene Modelle (Persönlichkeitkeitsmodelle, Wertemodelle, Team-Heterogenitätsmodelle, Kommunikationsmodelle usw.) mit denen wir den Collective Mind herbeiführen; und das funktioniert sehr gut, wie wir in mehr als 15 Jahren Praxis zeigen konnten, jedoch ist es uns bisher nicht gelungen den Flow-Zustand selbst, den Collective Mind, durch ein Modell oder eine Theorie zu beschreiben. Wir arbeiten stattdessen mit Metaphern oder wir verwenden Stellvertretermodelle, kurz Proxies, um ihn zu beschreiben. Diese Proxies sind:

  • Mitwirkungs- und Redezeit: Der CM ist dann besonders stark, wenn alle Teammitglieder nahezu gleichstark mitwirken, also sie zum Beispiel in nahezu allen Teammeetings anwesend sind und ihre Redezeit nahezu gleich verteilt ist.
  • Ähnlichkeit in der Wort- und Bild-Wahl: Der CM ist dann besonders stark, wenn alle Teammitglieder ähnliche Worte und/oder Bilder benutzen, um einen Projektsachverhalt zu beschreiben. – Es findet ein Spiegeln im gesprochenen Wort und im Bild statt.
  • Zufriedenheit: Der CM ist besonders stark, wenn alle Teammitglieder der Arbeit im Team eine sehr hohe Zufriedenheit attestieren und sie das Gefühl haben einen sinnvollen Beitrag zu leisten.
  • Spiegeln der Körpersprache: Der CM ist besonders stark, wenn alle Teammitglieder in ihrer Körpersprache die Köpersprache der anderen spiegeln.

Im Idealfall treffen für ein CM Hochleistungsteam alle diese Proxies gleichzeitig zu.

Diese Stellvertretermodelle können sich auch über die Zeit entwickeln: Zum Beispiel benutzen die Teammitglieder am Anfang völlig unterschiedliche Beschreibungen (Sätze, Bilder), um ein Projektziel oder einzelne Anforderungen zu konkretisieren. Steigt der Collective Mind, werden die Unterschiede geringer. Jedoch kann im Team etwas passieren, das den Collective Mind zerstört oder wieder ins Wanken bringt. Die Unterschiede in den Proxies werden entsprechend wieder größer. Beispiele für solche Ereignisse, die den CM wieder verändern, sind neue Teammitglieder oder wechselhafte Anwesenheiten von Teammitgliedern oder neue Erkenntnisse, die nicht von allen im gleichen Maße gesehen und geteilt werden.

Die Leser dieses Blogs dürften diese empirischen Aussagen bei geneigter Bobachtung in ihren Teams sehr schnell bestätigen. Ich verweise diesbezüglich auch auf das Whitepaper von Armatowski et. al., das anlässlich der IPMA Research Conference zum Thema Selbstorganisation erstellt wurde [2]. – Das Whitepaper skizziert für das Autorenteam den Prozess der Selbstorganisation, also der Ausbildung eines CM’s, während der IPMA Research Hackdays 2020.

Im Bereich der Wissenschaften, insbesondere derjenigen, die Sachverhalte auch mathematisch beschreiben, hat man sich inzwischen weitgehend daran gewöhnt die Realität mit den Proxies für die Realität gleichzusetzen: Zum Beispiel werden elektrische Erscheinungen einem elektrischen Feld E zugeschrieben (Fett gedruckte Buchstaben bezeichnen hier eine sogenannte Vektorgröße, die durch einen Betrag und eine Richtung beschrieben wird). – Wahrscheinlich käme kaum jemand auf die Idee, E als Proxy zu betrachten. – Falls es doch mal durch einen genialen Wissenschaftler geschieht, bringt dieser die Erkenntnis einen Schritt weiter, in dem er die dem Proxy hinterlegten Annahmen radikal hinterfragt.

Alle anderen dürften über Jahrzehnte oder sogar Jahrhunderte hinweg das elektrische Feld E mit der „wahren“ elektrischen Realität gleichsetzen. – Lediglich im Bereich der Quantenmechanik ist diese breite Sicherheit nie so wirklich wahrgeworden. – Die Unterschiede zwischen alltäglicher Erfahrung und quantenmechanischer Beobachtung und den assoziierten Proxies ist nach wie vor zu groß.

Proxies sind also nur Stellvertreter, also Modelle oder Theorien, die unsere Beobachtungen zusammenfassen bzw. abstrahieren. So gesehen ist es sicherlich legitim die obigen Collective Mind Proxies für den „wahren“ Collective Mind zu verwenden. Verwendet man zusätzlich die Mathematik zur Beschreibung, so ergibt sich ein deutlich besseres und erweitertes Verständnis der Zusammenhängen, nicht selten werden Zusammenhänge erst sichtbar. – Eine Aussage, die nach meiner Erfahrung immer gültig ist, vorausgesetzt man berücksichtigt wie auch bei anderen (mentalen) Modellen, dass Proxies nicht zwangsläufig die Realität sind.

Setzt man die mathematische Beschreibung in Technologie, in unserem Fall in Artificial Intelligence Technologie, um, so lässt sich der CM viel besser fassen. Wie wir gleich sehen werden, lassen sich die Collective Mind Proxies in der Praxis gut operationalisieren und gut überprüfen.

Wir führen das mathematische Gebilde „Tensorfeld Collective Mind CM(x,t)“ ein, das vom Ort x und der Zeit t abhängt.

Was verstehe ich darunter?

Im Kontext von Management oder Projekt Management kann man sich sehr gut vergegenwärtigen, dass der Collective Mind wie ein abgeschossener Pfeil eine Richtung haben muss, denn Projektziele oder die Ziele einzelner Personen oder Organisationen werden u.a. durch eine Richtung beschrieben. Er hat auch einen Betrag, nämlich die Energie, die im Team, in der Person oder der Organisation zu diesem Ziel vorhanden ist. Dass der CM sich zeitlich ändern kann, habe ich schon oben erläutert. – Er kann natürlich auch vom Ort abhängen. – Der Collective Mind innerhalb eines (größeren) Teams oder einer Organisation kann durchaus von Ort zu Ort unterschiedlich sein: Verschiedene Sub-Teams eines Teams haben unterschiedliche Collective Minds, verschiedene Sub-Organisationen (Abteilungen) einer Organisation haben wahrscheinlich auch unterschiedliche Collective Minds.

Mit diesen Annahmen setze ich die obigen verbalen Proxies in Mathematik um: Die Aussage „in etwa gleiche Mitwirkungs- und Redezeit“ kann man in Differenzen umsetzen, indem wir die Redezeiten jeder Person mit jeder anderen Person vergleichen. Es entsteht eine Matrix, oder allgemeiner ein Tensor oder Tensorfeld. – Die bekannteste google AI/ML Plattform auf der Basis neuronaler Netzwerk heißt tensorflow, weil Tensoren durch das Netzwerk aus künstlichen Neuronen fließen [3].

Auch die Ähnlichkeit in der Wortwahl kann man durch Differenzen darstellen. Die Differenzen in der Wortwahl bilden ebenfalls ein Orts- und Zeit-abhängiges Tensorfeld.

Auf der Basis der obigen verbalen Proxies führen wir eine mathematische Form für den Operator des Collective Minds, CMO(x,t) (das hochgestellte O steht für Operator), ein:  

CMO(x, t) ~ proxyCMO(x, t) = SO(x, t)*MO(x,t)

Diese Gleichung drückt aus, dass wir annehmen, dass das „unbekannte Wesen“ CMO(x, t) näherungsweise durch einen proxyCMO(x,t) beschrieben werden kann; und dass zwei Faktoren – nach jetziger Erkenntnis – diesen proxyCMO(x,t) bestimmen. Ich habe Faktoren gewählt, um auszudrücken, dass im Idealfall alle zwei Faktoren, SO und MO, vorhanden und groß sein müssen, um einen großen CMO(x,t) zu erhalten.

SO(x,t) = Similarity: Dieser Faktor “misst” Mitwirkungs- und Redezeit sowie Wortähnlichkeit (Ähnlichkeiten in Bildern berücksichtigen wir der Einfachheit wegen hier nicht). Wir können diese beiden Proxies gut in einer Größe zusammenfassen: Wählen wir SO(x,t) geeignet, so kann SO(x,t) nur dann eine hohe Similiarity ausweisen, wenn man gleich große Text – oder Redeblöcke miteinander vergleicht und dies kann nur dann der Fall sein, wenn die Teammitglieder in etwa gleich lange anwesend sind und gleichlange sprechen.

MO(x,t) = Mood: Dieser Faktor misst die Stimmung, die Zufriedenheit im Team oder in der Organisation. Dieser Faktor schließt auch die Häufigkeit und Intensität des körperlichen Spiegelns ein.

Ob man mehrere Faktoren benötigt, ist mir zurzeit noch nicht klar, denn SO kann nur dann hoch sein, wenn MO hoch ist. – Nur zufriedene Teammitglieder reden in etwa gleich viel mit einer ähnlichen (spiegelnden) Kommunikation in Sprache und Körper. – Jedoch könnte man Unterschiede zwischen Körpersprache und gesprochenem Wort benutzen, um Dysfunktionalitäten aufzudecken. Hierzu wäre eine entsprechende visuelle AI notwendig und dies geht in jedem Fall weit über diesen Blog hinaus.

Ich tue jetzt mal so, als wenn einige Jahrzehnte verstrichen seien und wir uns wie beim elektrischen Feld E daran gewöhnt hätten, Proxy und Realität gleichzusetzen:  Wir setzen also in der obigen Gleichung CMO und proxyCMO gleich und wir nehmen der Einfachheit wegen an, dass die Similarity genügt, um den CMO zu beschreiben:

CMO(x, t) = SO(x, t)

SO(x, t) ist eine symmetrische Matrix deren Elemente Sij(x,t) Differenzen von zwei Vektoren sind, nämlich die Differenz zwischen dem Wortanteil und der Wortwahl des Teammitgliedes i und derjenigen des Teammitgliedes j. Wortanteil und Wortwahl jedes Teammitgliedes werden durch einen Vektor in einem verbalen Raum ausgedrückt.

Jetzt müssen wir „nur noch“ einen geeigneten Operator SO(x,t) finden, der in einem verbalen Raum Vektoren aufspannt. – Ohne die Fortschritte in AI/ML wäre hier das Ende meiner Ausführungen erreicht. – Die enormen Fortschritte in der Verarbeitung der natürlichen Sprache mittels AI/ML, also dem AI/ML-Teilgebiet NLP (Natural Language Processing), machen es mir möglich, weiterzukommen.

Im Jahre 2013 wurde die fundamentale Idee veröffentlicht, Text bzw. Worte in Vektoren zu transferieren: Es werden Worte in einen Vektorraum eingebettet. Deshalb nennt man diese Technik auch word embedding. Word embedding wird auch mit dem Namen der wahrscheinlich bekanntesten AI/ML NLP Bibliothek „word2vec“ von google gleichgesetzt. [4, 5]. Jedem Wort wird hierzu ein token, eine Zahl, zugeordnet und dieses token wird in einen hochdimensionalen Raum, typischer Weise mit 300 Dimensionen! eingebettet [6, 7, 8]. Die hohe Dimension des (Wort-) Raumes erlaubt es, Worte nach 300 Dimensionen zu differenzieren. Das Verblüffende ist, dass Neuronale Netzwerke, die mittels Texten trainiert werden, die Worte eines Textes nicht beliebig in diesem Raum verteilen, sondern gemäß Sinn, wie wir ihn auch wahrnehmen. Man kann dann sogar mit diesen Wortvektoren „rechnen“, z.B. König-Mann+Frau = Königin. Dieses Rechen hat auch dazu geführt, dass man Vorurteile und Diskriminierungen in Datensätzen aufgedeckt hat, also z.B. Arzt-Mann+Frau = Krankenschwester. – Wohlgemerkt, Datensätze die unsere diskriminierende Realität beschreiben.
Wer sich von der hinterlegten Technik beeindrucken lassen möchte, den verweise ich auf die word embedding Illustration von tensorflow [9]. 

Dies word embedding ist für mich eine mehr als nur erstaunliche Erfahrung. – Sie  stützt einen meiner wichtigsten Glaubenssätze: „Das Sein unterscheidet nicht zwischen belebt und unbelebt, oder zwischen bewusst und unbewusst, wir treffen überall auf die gleichen fundamentalen Prinzipien, auch wenn deren Erscheinungen  auf den ersten Blick sehr unterschiedlich sein mögen.“

Eine der bekanntesten NLP Bibilotheken, die word2vec Funktionalität integriert, ist spaCy [10]. Ich benutze spaCy, um SO(x, t) an einem einfachen Beispiel zu berechnen. Ich lehne mich an Beispiele aus [11] an und zeige im Folgenden den Code wie er in einem Jupyter Notebook [12] in der google Colab-Umgebung [13] lauffähig ist. Zunächst eine kleine Illustration von word embedding:

pip install spacy

!python -m spacy download en_core_web_md

import en_core_web_md

nlp = en_core_web_md.load()

vocab =nlp(‚cat dog tiger elephant bird monkey lion cheetah burger pizza food cheese wine salad noodles macaroni fruit vegetable‘)

words = [word.text for word in vocab]

vecs = np.vstack([word.vector for word in vocab if word.has_vector])

pca = PCA(n_components=2)

vecs_transformed = pca.fit_transform(vecs)

plt.figure(figsize=(20,15))

plt.scatter(vecs_transformed[:,0], vecs_transformed[:,1])

for word, coord in zip(words, vecs_transformed):

  x,y = coord

  plt.text(x,y, word, size=15)

plt.show()

Unter Anwendung des obigen Codes wird folgendes Bild erzeugt:

Abbildung 1: 300-dimensionales Wortvektor-Modell projiziert auf 2 Dimensionen

Ich gehe nicht auf die Details des Code-Beispiels ein, lediglich einige Hinweise, um das Wesentliche des Blogbeitrags zu erfassen: Ich benutze ein vortrainiertes englisches Vektormodell „en_core_web_md“ und übergebe diesem einige englische Worte ‚cat dog tiger elephant bird monkey lion cheetah burger pizza food cheese wine salad noodles macaroni fruit vegetable‘, die das vortrainierte Modell in einem 300-dimensionalen Vektorraum verortet. Um diese Verortung darstellen zu können, wird die Verortung mit der mathematischen Technik PCA auf zwei Dimensionen in der Abbildung 1 projiziert. – Dadurch kommt es zu visuellen Überlappungen, wie man im Bild sehen kann. Auch erkennt man sehr schön, dass das vortrainierte Modell gemäß der Bedeutung der Worte Bedeutungscluster gebildet hat.

Wenden wir uns jetzt der Similarity zu, indem wir die Similarity von Vektoren berechnen:

Abbildung 2: Zwei übliche Definitionen von Wort Similarity

Abbildung 2 erläutert die beiden gebräuchlichen NLP Similarities. Word2vec verwendet hierbei lediglich die Cosine-Similarity. Werden ganze Sätze oder Texte auf Similarity geprüft „misst“ word2vec die Ähnlichkeit der Texte über Mittelwertbildung der beteiligten Vektoren bzw. Worte.

Die damit verbundenen Ergebnisse sind verblüffend, wie das nachfolgende einfache Beispiel zeigt:

doc1 = nlp(‚I visited England.‘)

doc2 = nlp(‚I went to London‘)

doc1.similarity(doc2)

Die Cosine-Similarity liegt für dieses Beispiel bei sα = 0,84. Die Similarity wird von word2vec auf den Bereich 0 bis 1 normiert (Anm.: Die Similarity könnte auch zwischen -1 und 1 liegen, was für unsere Betrachtung besser geeignet wäre).

Jedoch… die Euclidean-Similarity, berechnet mittels des Codes aus [14], ergibt eine sehr geringe Similarity von sr = 0,08.

D.h. Die Wordvektoren zeigen zwar in die gleiche Richtung liegen aber in völlig unterschiedlichen Raumbereichen des 300-dimensionalen Wortvektorraumes. – Beide Aussagen sind also nicht identisch, haben jedoch eine hohe Bedeutungs-Affinität.

Ein anderes Beispiel: Ich möchte die Similarity von zwei Texten aus unserem Buch Management 4.0 [15] vergleichen: Ich vergleiche eine Kurzfassung der Management 4.0 Definition mit der Langfassung der Definition:

doc1 = nlp(‚With a systemic leadership approach, Management 4.0 provides the guiding competence for viable learning organizations in complex situations and environments. Management 4.0 integrates an Agile Mindset, the universal principle of self-organization as a governance guideline, and relevant work techniques, for sustainable working models of the future.‘)

doc2 = nlp(‚We understand Agile Management as a leadership and management practice, to be able to act in an agile and proactive way in a complex environment characterized by uncertainty.  It is described as an Agile Mindset with a focus on: leadership for which self-leadership is the basis; leadership, which is based on a respect for basic human needs; leadership, which demands an understanding of complex systems and promotes their regulation through iterative procedures; people who self-organize in teams; fluid organizations, which promote adaptable and fast delivery of useful results and create innovative customer solutions through proactive dealing with changes‘)

Das Ergebnis für die Cosine-Similarity, von word2vec, ist wieder verblüffend:

doc1.similarity(doc2)

sα = 0,97

Die Euclidean-Similarity berechnet mit dem Code aus [14] ergibt sr = 0,46. Also verglichen mit der Similarity aus dem vorherigen Beispiel sehr hoch.

Auf der Basis dieser Beispiel-Daten kann ich einen Beispiel Similarity-Operator angeben: Wir nehmen der Einfachheit wegen an, dass die obigen beiden Texte aus dem Management 4.0 Buch von zwei Personen gesprochen wurden. Damit ergibt sich der Collective Mind Operator dieser beiden Personen zu:

SO(x, t) ist eine symmetrische 2*2 Matrix (ich bitte darum, kleine farbliche Unsauberkeiten in der Formeldarstellung zu übersehen, hier bei sα): Die Nicht-Diagonal Elemente sind hier keine einfachen Skalare, sondern bilden jeweils einen Vektor in einem Similarity Raum. Da wir mit überschaubarer Mathematik (d.h. einfacher Matrizenrechnung) weiterkommen wollen, wandeln wir diese Vektoren in Skalare um. Die einfachste Weise, dies zu tun, ist sr(x,t) nicht zu berücksichtigen und die resultierende Größe als Skalar anzusehen. Ich könnte auch die Länge des Similarity-Vektors in die obige Matrix einsetzen. – Der Vektorbetrag wäre dann so etwas wie eine integrierte Similarity. – Das Weglassen von sr(x,t) hat im Rahmen dieser Vereinfachungen keinen wesentlichen Einfluss auf die nachfolgenden Ausführungen.

Damit ergibt sich:

Man kann diese Matrix auch als sogenannte Heat Matrix darstellen, in dem die Similarities farblich codiert werden: Dies wurde in [16] benutzt, um die Similarity der Reden deutscher Politiker visuell darzustellen.

Wir haben bisher zwar einen Operator für den CM definiert, jedoch den CM selbst nicht ermittelt. Dies tue ich jetzt:

Für den Operator CMO(x, t) können wir sogenannte Eigenwerte und Eigenvektoren berechnen. Eigenvektoren sind diejenigen Vektoren, die unter der Anwendung des Operators lediglich ihren Betrag verändern, jedoch ihre Richtung beibehalten. Die Veränderung des Betrages bei Anwendung des Operators wird Eigenwert genannt. Den größten Eigenwert und dessen zugehörigen Eigenvektor assoziiere ich mit dem Collective Mind Vektor CMvektor dieser beiden kommunizierenden Personen (es gibt noch einen zweiten Eigenwert und Eigenvektor, der aber hier (wahrscheinlich) keinen Sinn machen):

Das Internet stellt auch für solche Berechnungen eine App zur Verfügung [17]. Der Vektor CM bekommt damit folgende mathematische Gestalt:

Der Eigenvektor liegt also auf der „Diagonalen zwischen zwei Personen“ und hat einen Eigenwert der größer als 1 und maximal 2 ist. Die Mathematik spiegelt mein Verständnis eines CM wider. Deshalb sage ich: „Gar nicht schlecht für den Anfang 😉, jedoch werden Synergieeffekte (d.h. Eigenwerte größer 2) und Effekte des gegenseitigen Blockierens (d.h. Eigenwerte kleiner 1) nicht abgebildet. Letzteres hängt auch damit zusammen, dass die word2vec Similarity per Definition nicht kleiner Null ist.

In unserem Beispiel ist der Eigenvektor und der Eigenwert statisch, da die Similarity keine explizite Zeitabhängigkeit enthält. Im Allgemeinen ist die Similarity eine  zeit- und ortsabhängige Größe. Damit werden die Berechnungen viel aufwendiger, unterscheiden sich jedoch nicht von den einfachen Ausführungen hier.

Es ist also möglich Zeitscheiben zu definieren, in denen eine AI synchron in Teammeetings die Gespräche aufnimmt, die Gespräche transkribiert und dann wie hier geschildert (und evtl. mit weiteren AI Techniken) die Similarity berechnet. Die Darstellung der Similarity als Zeitreihen und des zeitlichen Verlaufes des Vektors CM könnte als Feedback-Mechansimus eingesetzt werden, um eine Teamreflexion zu unterstützen. – Die AI übernimmt damit eine „Coaching“ Funktion. – Dieser Blog-Beitrag skizziert also die Ausgestaltung der AI-Anwendung Collective Mind im IPMA Kompetenz Bereich Teamarbeit, aus meinem Dezember 2021 Blog-Beitrag.

[1] Köhler J, Oswald A. (2009) Die Collective Mind Methode, Projekterfolg durch Soft Skills, Springer Verlag

[2] Armatowski S., Herrmann P., Müller M., Schaffitzel N., Wagner R (2021) The importance of Mindset, Culture and Atmosphere for Self-Organisation in Projects, White Paper IPMA, erstellt anläßlich der IPMA Research Conference 2020

[3] tensorflow (2022) tensorflow.org, zugegriffen am 16.04.2022

[4] google (2022) word2vec, https://code.google.com/archive/p/word2vec/, zugegriffen am 16.04.2022

[5] Wikipedia (2022) word2vec, https://en.wikipedia.org/wiki/Word2vec, zugegriffen am 16.04.2022

[6] Karani D (2022) Introduction to Word Embedding and Word2Vec, https://towardsdatascience.com/introduction-to-word-embedding-and-word2vec-652d0c2060fa, zugegriffen am 20.04.2022

[7] Megret P (2021) Gensim word2vec tutorial,  https://www.kaggle.com/pierremegret/gensim-word2vec-tutorial , zugegriffen am 20.04.2022

[8] Delaney J (2021) Visualizing Word Vectors with t-SNE, https://www.kaggle.com/jeffd23/visualizing-word-vectors-with-t-sne/notebook , zugegriffen am 20.04.2022

[9] word embedding playground (2022) http://projector.tensorflow.org/

[10] Spacy (2022) https://spacy.io/models/de, zugegriffen am 20.04.2022

[11] Altinok D (2021) Mastering spaCy, Verlag Packt, kindle edition

[12] Jupyter Notebooks (2021) https://jupyter.org/, zugegriffen am 02.12.2021

[13] Colab (2021) https://colab.research.google.com/

[14]   NewsCatcher Engineering Team (2022) https://newscatcherapi.com/blog/ultimate-guide-to-text-similarity-with-python, zugegriffen am 20.04.2022

[15] Oswald A, Müller W (2019) Management 4.0 – Handbook for Agile Practices, Verlag BoD, kindle edition

[16] Timmermann T (2022) https://blog.codecentric.de/2019/03/natural-language-processing-basics/, zugegriffen am 20.04.2022

[17]   Виктор Мухачев (2022) https://matrixcalc.org/de/, zugegriffen am 20.04.2022   

AI & M 4.0: Zur Erweiterung unserer Intelligenz und Realität durch Machine Learning (ML) und Artificial Intelligence (AI) im Management 4.0

Der ehemalige amerikanische Außenminister Kissinger sowie der ehemalige Google CEO Schmidt und der MIT Professor Huttenlocher haben zusammen vor ein paar Tagen ein bemerkenswertes Buch zu unserer Zukunft im Zeitalter der künstlichen Intelligenz herausgebracht. – Ich nenne wesentliche Aussagen dieses Buches [1]:

  • Machine Learning (ML) und Artificial Intelligence (AI) basieren auf völlig anderen Prinzipien als „klassische“ Software: Im Rahmen vorgegebener Selbstorganisations-Parameter (und Daten) organisiert sich eine AI selbst. – Sie bildet durch Training Modelle zu den eingegebenen Daten, also der ausgewählten Realität, ab. – Diese Modelle sind nicht perfekt, sie liefern Wahrscheinlichkeitsaussagen. – Und damit haftet diesen Modellen unmittelbar Unsicherheit an! – Gar nicht so unähnlich unserer Intelligenz!
  • Systeme künstlicher Intelligenz erkennen schon heute Muster in unsrer Realität, die unserer Intelligenz (bisher) verschlossen waren. – AI bildet erfolgreich Schachstrategien aus, die bisher kein Mensch verwendet hat oder findet wirksame Medikamente, die bisher unentdeckt geblieben sind, oder hilft Prinzipien der Physik und Mathematik zu entdecken usw. 
  • AI wird unsere Sicht auf die Realität wesentlich verändern, nicht nur quantitativ, sondern vor allem auch qualitativ! – Und dies in zweierlei Hinsicht: Die Entwicklung von AI sorgt für die Integration verschiedener Disziplinen wie Psychologie, Sozialwissenschaften, Naturwissenschaften, Informatik, Mathematik sowie Philosophie und führt in den jeweiligen Disziplinen zu neuen Erkenntnissen und Anwendungen.
  • Gesellschaftliche Systeme werden sich substanziell unterschiedlich entwickeln, je nachdem, ob in welchem Maße und in welcher Qualität ML/AI eingesetzt wird. – Dies wird sich zum einen auf globaler Ebene zeigen, und zum anderen wird es auch eine neue „Schichtung“ der Gesellschaft(en) entlang der individuellen ML/AI Kompetenzen hervorrufen. – Derzeit gibt es nur zwei relevante ML/AI Ecosysteme: USA und China. – Und diese Ecosysteme formen mit ihren ML/AI Systemen unsere (europäische) Zukunft!

Falls jemand diese Aussagen anzweifelt, so möge er sich die Internetseite von DeepMind [2] oder der AI community DeepAI [3] ansehen – die Zweifel dürften sehr schnell verschwinden.

Seit ein paar Monaten konfiguriere bzw. programmiere ich ML/AI Systeme, also Physical Technologies. – Ich tue dies auf der Basis des amerikanischen ML/AI Ecosystems, insbesondere von Google’s Colab [4], Python [5] und Jupyter Notebooks [6]: Ich lote aus, inwieweit diese Physical Technologies helfen könnten, die Social Technology Management 4.0 gemäß den obigen Aussagen zukunftsfähig zu machen. – Das heißt, die Management 4.0 Intelligenz durch ML/AI quantitativ und qualitativ zu erweitern.

Im Tun wird einem sehr schnell bewusst, dass das europäische ML/AI Know-How ganz wesentlich vom amerikanischen ML/AI Ecosystem dominiert wird. – Das amerikanische ML/AI Ecosysteme von Google, Facebook/Meta Platforms, Microsoft und Co. ist überwältigend! – Es gibt eine Vielzahl an öffentlich zugänglichen Plattformen mit einer enormen Anzahl von vortrainierten ML/AI Modellen, unzähligen Tutorials und Code-Beispielen. – Selbst die Nutzung generativer Natural Language Processing (NLP) Systeme der neuesten Generation oder sogar die Anbindung an Quantencomputing ist prinzipiell möglich.

Das amerikanische ML/AI Ecosystem ermöglicht auch Personen wie mir, deren ML/AI Know-how Lichtjahre vom google Know-how entfernt ist, in überschaubaren Schritten in die ML/AI-Welt einzusteigen. Google, Meta Platforms, Microsoft und Co. haben damit einen gesellschaftlichen Innovations-Feedback Mechanismus angestoßen, der der (amerikanischen) Gesellschaft – zumindest einem gewissen Teil davon – einen enormen Innovationsschub gibt: Das ML/AI Ecosystem trägt zu immer schnelleren und qualitativ neuartigen ML/AI Entwicklungen bei, teilweise sogar zu ML/AI Technologie-Revolutionen – man siehe [2] und [3].

Auch wenn nicht wenige Europäer zum amerikanischen ML/AI Ecosystem beitragen, so wurde mir im Tun „schmerzlich“ bewusst, dass wir Europäer auf der Ebene der gesellschaftlichen ML/AI Ecosysteme keine Rolle spielen. – Auch wenn es „kleine“ lokale ML/AI Ecosysteme wie das Tübingen AI Center gibt [6].
Mir sind keine öffentlich zugänglichen europäischen ML/AI Plattformen bekannt. Gerade im Natural Language Processing (NLP) Bereich gibt es nur wenige vortrainierte Modell für europäische Sprachen oder die deutsche Sprache. (Nahezu) alle Tutorials sind in Code und Daten auf den Englisch-sprachigen Bereich ausgerichtet…Dies dürfte nicht nur mir sehr viel mühsame Transferarbeit bescheren!

Man mag das amerikanische ML/AI Ecosystem durchaus auch kritisch sehen, jedoch kann man Google und Co. mit ihrer ML/AI open source Philosophie nicht absprechen, dass Sie einen erheblichen Beitrag für die (ML/AI-) Entwicklung der amerikanischen und auch westlichen Gesellschaft leisten. Schaue ich auf die deutsche Unternehmenslandschaft, so zahlen unsere Unternehmen nach meinem Wissen auf kein gesellschaftliches ML/AI Ecosystem ein. – Unsere deutsche (unternehmerische) Gesellschaft wird nach wie vor von Silo-Denken, Silo-Geschäftsmodellen und Silo-Handeln bestimmt. Das heißt auch, dass gemäß [1] die Entwicklung der europäischen Gesellschaft über kurz oder lang einen Mangel an erweiterter Intelligenz und erweiterter Realität spüren wird, falls dieser Mangel nicht schon jetzt vorhanden ist.

Die obigen Aussagen aus [1] entsprechen meiner Erfahrung und Wahrnehmung und sind ein Motiv, sich um die Verbindung von AI und Management 4.0 (AI & M 4.0) zu kümmern: AI kann dem Projektleiter sowie dem Team assistieren und, was vielleicht noch viel wichtiger ist, mentale Feedback Mechanismen anstoßen, die die kognitive menschliche Projekt- und Management-Intelligenz erweitern. Damit geht einher, dass das menschliche Bewusstsein sich erweitert und mentale wie gesellschaftliche Transformationen angestoßen und begleitet werden. – Die wahrgenommene Realität insbesondere in komplexen Projekten wird sich nach meiner Einschätzung durch ML/AI erheblich erweitern.

Ich liste im Folgenden AI & M 4.0 Anwendungskategorien, die nach meinem aktuellem Wissensstand für das (Projekt) Management von Bedeutung sein werden.- Ich kennzeichne die Kategorien durch AI/ML und eine fortlaufende Nummer. – Man siehe hierzu auch die phasenorientierte Zuordnung von PM Aktivitäten und AI/ML Techniken in [8].

AI/ML 1 – Numerische Feature-Multilabel (supervised) AI: Ein Sachverhalt wird über numerische Datenkategorien (Features) beschrieben und Anwendungstypen oder Klassen (man spricht von Labels) zugeordnet. Zum Beispiel nimmt ein AI System eine Aufwands- oder Kostenschätzung vor. Hierzu werden die Aufgaben gemäß bestimmter numerischer Features beschrieben und einer Aufwandsklasse, also einem Label, zugeordnet. Supervised bedeutet hier, dass die AI mit einer Feature-Label Zuordnung trainiert wird, die durch Menschen vorher vorgenommen wurde. Hierbei ist es meines Erachtens jedoch nicht notwendig, zuerst jahrelang solche Zuordnungen, also Daten zu sammeln. Die AI könnte vielmehr in laufende Aufwandsschätzungen gemäß Delphi oder Planning Poker eingebracht werden, im Wissen, dass die AI sich wahrscheinlich langsam aufbaut.    

AI/ML 2 – Text-Multilabel (supervised) Natural Language Processing AI: Ein Sachverhalt wird über Text bzw. Sprache beschrieben und Labels zugeordnet. Auch eine Aufwandsschätzung könnte auf diese Weise durch AI vorgenommen werden.- Die zu schätzenden Aufgaben liegen als Textbeschreibungen vor und für das Training werden durch Menschen Label-Zuordnungen vorgenommen. Text und Label werden im AI-Training verarbeitet. – Die AI ist also in der Lage natürliche Sprache (Natural Language Processing (NLP)) zu verarbeiten. Ein anderes Bespiel ist die Analyse von Verhalten, beschrieben in Textform und die Zuordnung zu Persönlichkeitslabels (Temperament, Werten, Grundannahmen, Glaubenssätzen, Prinzipien). – Die nachträgliche Analyse von Verhalten durch niedergeschriebenen Text ist relativ „einfach“.  – Eine direkte Analyse der Kommunikation z.B. während einer Teamsitzung ist jedoch wesentlich anspruchsvoller und entzieht sich derzeit (noch 😉) meinem Kenntnisstand. – Selbstverständlich kann auf dieser Basis auch eine organisationale Kulturanalyse vorgenommen werden, indem die Kommunikation (Gesprochenes, Dokumente, eMail, Chat) im Team oder in der Organisation ausgewertet wird.  

AI/ML 3 – Graph Neural Networks bzw. Graphen-Multilabel (supervised) AI: Sehr viele Sachverhalte in Natur, Sozialem und Technik lassen sich über Graphen bzw. Netzwerke beschreiben [9, 10]. Soziale Systeme bzw. Organisationen lassen sich gut über Social Networks darstellen. Der Projektstrukturplan bzw. der Projektplan sind spezielle Graphen. Die Zielhierarchie ist eine weiterer Graph. Zum Beispiel lassen sich aus der Kommunikation der Stakeholder Social Networks ableiten und diese Social Networks oder Social Networks Bausteine werden mit Labels versehen und dienen dem Training von AI/ML. Ein anderes Beispiel ist die Extraktion der Zielhierarchie aus einer Teamkommunikation und die anschließende „Überprüfung der Einhaltung“ der Zielhierarchie in der Stakeholderkommunikation. Oder, das Social Network eines Teams wird Performance Labels (z.B. Hochleistung, mittlere Leistung, dysfunktionale Leistung) zugeordnet.  

AI/ML 4 – Team-Sprachanalyse (unsupervised) AI: Die Sprache in Teams oder Stakeholdergruppen wird auf Gemeinsamkeiten untersucht. So lässt sich u.a. aus der Wortwahl von Teammitgliedern u.a. mittels der Bag of Word und word embedding Technologien auf deren „mentale Verwandschaft“ oder das Collective Mind schließen.

AI/ML 5 – Generative NLP (unsupervised) AI: Mittels generativer NLP AI Systeme [11, 12] lassen sich u.a. Vertragsdokumente bzw. Claim-Dokumente mittels weniger von Menschen eingegebener zentraler Prinzipien generieren. Diese Systeme können auch dazu benutzt werden, Abweichungen (also Vertrags- und Claimrisiken) zu identifizieren.

AI/ML 6 – Clustering (unsupervised) AI: Die AI clustered numerische oder Textdaten. Diese Cluster zeichnen sich durch charakteristische Cluster Eigenschaften aus und erlauben damit das Erkennen von Mustern in den Daten. Auf diese Weise können zum Beispiel Projekte, Aufgaben oder auch Stakeholder geclustert werden. – Einen ersten Eindruck von der Fähigkeit Neuronaler  Netzwerke zu clustern, bietet die „Spielumgebung“ von Tensorflow [13].

Diese sechs Kategorien lassen sich auch kombinieren, sei es, um ergänzende Informationen zu erhalten oder eine sogenannte AI/ML Verarbeitungspipeline aufzubauen.

Ich erwarte, dass mit gewonnener Erfahrung diese sechs Kategorien detailliert werden und auch weitere Kategorien hinzukommen.

Ich verwende diese sechs AI/ML Kategorien, um AI & M 4.0 zu beschreiben: Ich tue dies unter Verwendung der IPMA ICB 4.0 Kompetenzen [14] bzw. der Kompetenzen des Handbuches Kompetenzbasiertes Projektmanagement (PM4) der GPM [15]. Die nachfolgende Tabelle listet AI & M 4.0. Die Tabelle ist sicherlich nicht vollständig. – Sie gibt den aktuellen Stand meiner Überlegungen wieder; sie dürfte sich also noch ändern.

Die Tabelle zeigt, dass schon heute mit entsprechendem Know-how die (Projekt) Management Intelligenz und Realität deutlich erweitert werden kann. – Mit einem AI Know-How, das im amerikanischen ML/AI Ecosystem abrufbar ist.

Die kursive Schrift in der Tabelle zeigt an, dass in diesen Fällen eine Bearbeitung durch die GPM Fachgruppe Agile Management begonnen wurde.

Perspective – KontextkompetenzenAI & M 4.0: Erweiterte Management 4.0 Intelligenz und Realität mittels ML/AI
Strategie 
Governance, Strukturen und Prozesse 
Compliance, Standards und RegularienAI/ML 5: Ermittlung von Compliance und Risiken durch den Abgleich von Projektartefakten und Compliance-Dokumenten sowie Standards und Normen
Macht und Interessen 
Kultur und WerteAI/ML 2: Ermittlung des organisationalen Mindsets (Kultur) durch vortrainierte Neuronale Netzwerke (NN): transkribierte Sprache und Texte werden mittels eines Transformermodells wie BERT [16,17] einer Text-MultiLabel Analyse unterzogen. – BERT ist eines der wenigen Modelle, das auch in einer deutschen Sprachversion verfügbar ist.   In einem zweiten Schritt kann diese Information dazu benutzt werden, um die Heterogenität der Kultur in einer Organisation zu ermitteln. In dem vorhergehenden Blog-Beitrag habe ich dies als „Spinglass-Organisation“ bezeichnet.     
People – Persönliche und soziale Kompetenzen 
Selbstreflexion und SelbstmanagementAI/ML 2: Die Selbstreflexion und das Selbstmanagement wird durch einen Feedback Mechanismus zwischen AI und Projektmanager oder Teammitglied angestoßen. Die AI erweitert die Metakompetenz des PM und der Teammitgliedern, indem den Verhaltensweisen durch die AI Persönlichkeitsdimensionen (Temperament, Motive, Werte, Glaubenssätze) zugeordnet werden.
Persönliche Integrität und Verlässlichkeit 
Persönliche KommunikationAI/ML 2: Die Realität der Kommunikation verändert sich auf der Basis der veränderten Selbstreflexion. Zudem liefert die AI Informationen zu den Persönlichkeitsdimensionen aller kommunizierenden Teammitglieder.
Beziehungen und Engagement 
FührungAI/ML 2: Die Führungs-Metakompetenz wird erheblich erweitert, da Selbstreflexion und Kommunikation deutlich verbessert werden. – Die Decision Intelligence wird deutlich erweitert.   AI/ML 4: Die Team-Sprachanalyse ermittelt Gemeinsamkeiten und hilft Dysfunktionalitäten aufzudecken.   AI/ML 3: Social Networks werden mittels GNN (Graph Neural Networks) analysiert und gelabelt. Dies kann auf Teamebene und auf der Ebene aller Stakeholder erfolgen.
TeamarbeitAI/ML 4: Die Stärke des Collective Mind wird durch einen „Statthalter“ also eine proxy Collective Mind (proxyCM) abgebildet: CM ~ proxyCM. Als proxyCM können verschiedene Modelle dienen: Transkribierte Sprache von Teammitgliedern werden mittels sklearn [18] (Native Bayes Classification) den Teammitgliedern zugeordnet. Desto eindeutiger die Zuordnung ist, desto geringer ist das CM, oder anders ausgedrückt, falls ein Text mehreren Teammitglieder zugeordnet werden kann, so besteht ein „inhaltlicher Überlapp“. – Der proxyCM ist größer.   Des Weiteren können Redefrequenz und Redelänge als weitere Indikatoren für den proxyCM verwendet werden.   Mittels einer Bag of Word oder Word Vector Embedding Analyse [18, 19, 20, 21] wird die Wortwahl der Teammitglieder analysiert. Unterschiedliche Wortwahlen unterschiedlicher Teammitglieder zeigen ein schwaches proxyCM an, oder umgekehrt lassen ähnliche Begriffsschwerpunkte auf ein starkes proxyCM schliessen.    
Konflikte und KrisenAI/ML 2, 3, 4: Diese AI Erweiterungen der PM Intelligenz bzw. Metakompetenz sind auch gerade in Konflikten und Krisen von enormer Bedeutung
Vielseitigkeit 
VerhandlungenAI/ML 2, 3, 4: Diese AI Erweiterungen der PM Intelligenz bzw. Metakompetenz sind auch gerade in Verhandlungen von enormer Bedeutung. AI/ML 5: Zusätzlich ist es hilfreich Vertrags- und Claim-Dokumente einer AI Überprüfung zu unterziehen.
Ergebnisorientierung 
Practice – Technische Kompetenzen 
ProjektdesignAI/ML 6: Die AI ermittelt Komplexitätsklassen auf der Basis von numerischen und/oder textuellen Daten. Die Komplexitätsklassen sind die Basis des Projektdesigns
Anforderungen und Ziele 
Leistungsumfang und Lieferobjekte 
Ablauf und Termine 
Organisation, Information und Dokumentation 
Qualität 
Kosten und FinanzierungAI/ML 1, 2: Die Ermittlung von Aufwänden und Kosten gehört zu den „einfachen“ AI/ML Techniken. Lediglich die Beschaffung von Trainingsdaten ist vermutlich schwierig, da archivierte Projektdaten selten vorliegen.
Ressourcen 
Beschaffung 
Planung und SteuerungAI/ML 1: siehe Kosten und Finanzierung
Chancen und Risiken 
StakeholderAI/ML 2, 3, 4: Diese AI Erweiterungen der PM Intelligenz bzw. Metakompetenz sind für das Stakeholdermanagement von enormer Bedeutung
Change und TransformationAI/ML 2, 3, 4, 5: Hier können nahezu alle AI Techniken zum Einsatz kommen, um eine valide Entscheidungsbasis für Interventionen zu haben.
Tabelle: AI & M 4.0 unter Verwendung der ICB 4.0 / PM4 Kompetenzen

Die GPM Fachgruppe Agile Management sucht Mitglieder, die bereit sind, in die Untiefen 😉 der AI Erstellung, des Trainingsdaten Sammelns oder sogar der Anwendung im eigenen Unternehmen einzusteigen! – Wir freuen uns über eine Kontaktaufnahme unter agile-management@gpm-ipma.de!

[1] Kissinger HA, Schmidt E, Huttenlocher D (2021) The Age of AI: And Our Human Future, kindle edition
[2] DeepMind (2021) deepmind.com, zugegriffen am 02.12.2021
[3] DeepAI (2021) deepai.org, zugegriffen am 02.12.2021
[4] Colab (2021) https://colab.research.google.com/
[5] Python (2021) https://www.python.org/
[6] Jupyter Notebooks (2021) https://jupyter.org/, zugegriffen am 02.12.2021
[7] Tübingen AI Center (2021) tuebingen.ai, zugegriffen am 02.12.2021
[8] Nuhn H (2021) Organizing for temporality and supporting AI systems – a framework for applied AI and organization research, Lecture Notes in Informatics, GI e.V
[9] Veličković P (2021) Introduction to Graph Neural Networks, https://www.youtube.com/watch?v=8owQBFAHw7E, zugegriffen am 02.12.2021, man siehe auch petar-v.com
[10] Spektral (2021) https://graphneural.network/, zugegriffen am 02.12.2021
[11] GPT-3 (2021) https://openai.com/blog/openai-api/, zugegriffen am 09.12.2021
[12] Gopher (2021) https://deepmind.com/blog/article/language-modelling-at-scale,
[13] Neuronales Netzwerk „zum Spielen“ (2021) https://playground.tensorflow.org, zugegriffen am 02.12.2021
[14] GPM (2017) Individual Competence Baseline für Projektmanagement, IPMA, Version 4.0 / Deutsche Fassung
[15] GPM (2019) Kompetenzbasiertes Projektmanagement (PM4), Handbuch für Praxis und Weiterbildung im Projektmanagement
[16] Tensorflow (2021) google Entwicklungsplattform, https://www.tensorflow.org, zugegriffen am 02.12.2021
[17] BERT (2021) NLP Transformer Model BERT, https://huggingface.co/models, zugegriffen am 02.12.2021
[18] Scikit-learn (2021) https://scikit-learn.org/, zugegriffen am 02.12.2021
[19] Gensim-word2vec (2021) https://www.kaggle.com/pierremegret/gensim-word2vec-tutorial, zugegriffen am 02.12.2021
[20] Word-Vector-Visualisation (2021) https://www.kaggle.com/jeffd23/visualizing-word-vectors-with-t-sne/notebook, zugegriffen am 02.12.2021
[21] Spacy (2021) https://spacy.io/models/de, zugegriffen am 02.12.2021          

Metabetrachtungen: Zur Schnittmenge von Intuitivem Bogenschießen, Künstlicher Intelligenz und Management 4.0

Ende letzten Jahres habe ich einen WDR-Fernseh-Beitrag zur Bogenwerkstatt gesehen [1]. Dieser Beitrag hat meine verschüttete Kindheitsleidenschaft zum Bogenschießen wieder offengelegt. Seither übe ich mich mit großer Freude im sogenannten Intuitiven Bogenschießen [2]. Beim Intuitiven Bogenschießen bringt allein das „Körpergefühl und die Erfahrung des Schützen den Pfeil ins Ziel – rein intuitiv ohne Zieltechnik“. Intuitives Bogenschießen hat eine recht große Nähe zum japanischen Zen-Bogenschießen. – Das Buch des Philosophen Eugen Herrigel, der nach sechs! Jahren harten Übens (genüsslich zu lesen) seine Zen Bogenschieß-Prüfung ablegte gibt u.a. einen wunderbaren Eindruck von der Aussage „rein intuitiv ohne Zieltechnik“. – Die Fähigkeit sich an unterschiedliche Kontexte anzupassen, wird insbesondere beim 3D-Parcours Schießen im Gelände besonders herausgefordert.

Intuitives Bogenschießen wird auch als therapeutisches Bogenschießen in Kliniken eingesetzt. – Fokus, Adaption und Intuition sind zentrale Elemente des Intuitiven Bogenschießens. – Die begriffliche Nähe zum Management 4.0 ist offensichtlich. Ich werde später aufzeigen, dass auch eine Schnittmenge zur Künstlichen Intelligenz mittels Deep Learning gegeben ist.

Vor kurzem hatte ich die Gelegenheit und das Glück an einem dreitägigen Kurs zum Thema Deep Learning mittels Tensorflow teilzunehmen [4]. Tensorflow ist die von google u.a. über colab.research.google.com zur Verfügung gestellte Plattform für das Erstellen von Deep Learning Systemen der Künstlichen Intelligenz. – Das Eintauchen in diese und weitere Plattformen des Machine Learnings (ML) ist überwältigend: Es ist kein Programmieren mehr im mir bisher bekannten Sinne, sondern entspricht eher dem Design und Konfigurieren von Systemen auf sehr hohem Abstraktionsniveau. – Den erreichten (globalen) Fortschritt im ML konnte ich mir bisher in dieser nahezu „unendlichen Fülle“ nicht vorstellen. Deep Learning ist eine Form von technischer Selbstorganisation – das Design und die Konfiguration dienen der Ausgestaltung der Selbstorganisationsparameter des neuronalen Netzwerkes; und damit ist der Bezug zu Management 4.0 schon erkennbar.          

Vor einem Jahr haben wir in der Fachgruppe Agile Management eine Arbeitsgruppe ins Leben gerufen, die sich mit der Anwendung von Künstlicher Intelligenz im Projekt Management beschäftigt: Helge Nuhn hat kürzlich einen Übersichtsartikel zu Stand und Potential der Nutzung von Artificial Intelligence Systemen (AI Systemen) in temporären Organisationen und im Projekt Management erstellt [5].

In allen drei Bereichen – Intuitivem Bogenschießen, Künstlicher Intelligenz und Management 4.0 – ist Lernen das Schlüsselelement, um das System Mensch, das technische System Neuronales Netzwerk und das soziale System Team oder Organisation auf das Umfeld, also auf den jeweiligen Kontext, auszurichten.

In dem Standardwerk zu Machine Learning (ML) von Aurélien Géron charakterisiert er maschinelle Lernverfahren u.a. durch die Gegenüberstellung von Instanzbasiertem Lernen und Modellbasiertem Lernen: Instanzbasiertes Lernen ist dem Auswendiglernen sehr nahe. – Die Maschine lernt vordefinierte Objekt-Beispiele (Instanzen) einfach auswendig und wendet ein sogenanntes Ähnlichkeitsmaß zum Identifizieren von neuen Objekten (Instanzen) an. Ist die Ähnlichkeit hoch genug werden die neuen Objekte maschinell den vordefinierten Klassen zugeordnet. Instanzen können spezifische Kunden, Äpfel, eMails usw. sein. Das Ähnlichkeitsmaß wird über Regeln definiert und wird im „klassischen“ Sinne programmiert. – Die Regeln stellen eine äußerst einfache Form eines von außen (durch den Programmierer) vorgegebenen Modells dar. Das eigentliche Modellbasierte Lernen funktioniert jedoch völlig anders: Einem System werden Beispieldaten übergeben und das System entwickelt hieraus ein Modell und dieses Modell wird zur Vorhersage verwendet. Das Modellbasierte Lernen ist also dem wissenschaftlichen Vorgehen bei der Entwicklung von Erkenntnissen nicht unähnlich. Deep Learning lässt sich nach dem mehr oder weniger an Selbständigkeit beim AI-Lernen unterscheiden: Supervised Learning, Unsupervised Learning und Reinforcement Learning.

Zwischen Instanzbasiertem Lernen und Modellbasiertem Lernen liegt ein fundamentaler Unterschied. – Dies wird in dem Moment offensichtlich, wenn ich die Verbindung zum Management 4.0 und dem Lernen im einfachen oder komplizierten Kontext und dem Lernen im komplexen Kontext ziehe. Das Instanzbasierte Lernen ist das Lernen an Best Practice, also an Beispiel-Objekten wie einem Beispiel-Projekt oder an einem Beispiel-Verfahren. Das Ähnlichkeitsmaß ist in diesem Fall die Nähe zur eigenen Praxis: Der Lernende sucht nach einem Projekt, das möglichst zu seiner bisherigen Praxis passt. Dies kann heißen, dass Beispiele aus anderen Branchen nicht akzeptiert werden, dass nur dann das Beispiel passt, wenn der Lernende davon ausgeht, dass im Best Practice ein ähnliches Mindset vorliegt oder dass der WIP (Work-in-Progress) wie in der eigenen Organisation ähnlich groß ist, usw…. In jedem Fall wird der Projektkontext des Best Practices nur ungenügend abgebildet, es findet keine oder eine nur sehr geringe Abstraktionsleistung statt und die Übertragbarkeit ist deshalb mehr als fraglich.

Lernen im Management 4.0 ist Modellbasiertes Lernen. Instanzen sind nicht die Basis des Lernens, allenfalls um zu zeigen, dass man mit dem Modell sehr gut Probleme (Instanzen) lösen kann, die man vorher noch nie gesehen hat. – Falls das Modell jedoch nicht erfasst wird, erzeugt dies bei einem an Instanzbasiertes Lernen gewöhnten Menschen keine Erkenntnis: Da das Modell sich nicht erschließt, erschließt sich auch nicht die Lösung; Modell und Lösung sind unpraktisch.         

Mit dieser Erkenntnis sehr eng verbunden ist das sogenannte „Overfitting“ im ML: Man kann ein Neuronales Netz extrem gut mit einem gewaltig großen Datensatz (zum Beispiel Tier-Bildern) trainieren. – Die ermittelte Trefferrate ist fantastisch, so lange Bilder aus dem Trainingsdatensatz verwendet werden. – Trotzdem versagt das Netz bei einem bisher unbekannten Bild die Hundeart Spitz zu erkennen, und verortet den Spitz als Tyrannosaurus Rex. Der Kontext in dem der Spitz gezeigt wurde, war anders als bei den Trainingsdaten: Das AI-System konnte aufgrund der geringen Datenvariabiltät kein hinreichend abstraktes Modell ausbilden, um den Spitz in einem andersartigen Kontext zu erkennen. – Das Modell war sozusagen im Instanzbasierten Lernen hängen geblieben.

Beim Bogenschießen machte ich eine ähnliche Erfahrung im Selbsttraining: Ich stellte mich mit sehr vielen Schüssen (und ich meine hunderte, wenn nicht tausende Schüsse) auf einen bestimmten Kontext ein und die Trefferrate war sehr gut! – Eugen Herrigel beschreibt in seinem Buch wie er 4 Jahre aus einem Meter Distanz zum Ziel die Rituale des Zen-Bogenschießens einübt, um dann ad hoc mit einer 60 Meter Distanz konfrontiert zu werden, an der er über Monate kläglich scheiterte.

Bogenschießen unterliegt vielen, wahrscheinlich einigen hundert Parametern: Einer der offensichtlichen Kontext-Parameter ist die Entfernung zum Ziel. Änderte ich in der Anfangszeit die Entfernung ging meine Trefferrate deutlich runter. Ich hatte meine Intuition, mein Gehirn (d.h. mein neuronales Netzwerk), mittels Instanzbasiertem Lernen trainiert. Mit der Hinzunahme weiterer Entfernungen im 3D-Parcours wurde meine Trefferrate immer schlechter, um nicht zu sagen chaotischer. Mein Gehirn hat es aufgrund der vielen Parameter nicht geschafft, von allein eine Intuition, also ein mentales Modell, auszubilden, das mir zu einer besseren Trefferrate verhilft. Bei künstlichen Neuronalen Netzwerken hat man eine ähnliche Beobachtung gemacht: AI-Systeme können ebenfalls „Frustration“ ausbilden, sei es, dass sie in einem System-Zustand verharren oder „chaotische“ Reaktionen zeigen.  

Die Trefferrate wurde erst wieder deutlich besser als ich meiner Intuition auf die Sprünge half. Ich dachte mir ein einfaches Modell aus: Dieses Modell beruht auf der Erkenntnis, dass der Pfeilflug eine Wurfparabel beschreibt. Man spricht auch von ballistischem Schießen. Ist die Distanz gering (ca. 20 m) merkt man vielfach nichts von dieser Wurfparabel. – Vielfach bedeutet, dass die anderen Parameter, wie zum Beispiel Pfeilgewicht, Bogenstärke, usw. dies ermöglichen. Im Falle meines Bogens und meiner Pfeile wird die Wurfparabel ab 20 m immer stärker sichtbar. Das Modell lautet aktuell: Richte den Pfeil in einer geraden Linie auf das Ziel aus, auch wenn es 30 oder 40 Meter entfernt ist, schätze die Entfernung und hebe den Bogen in Abhängigkeit von der Entfernung leicht an. Leicht anheben bedeutet maximal 1-2 Winkelgrad. – Ein Winkelgrad kann durchaus im Ziel eine Abweichung von 50 cm oder mehr hervorrufen. – Also eine ziemliche Anforderung an Intuition und Motorik. Seit ich mit diesem Modell (das noch etwas umfangreicher ist, und weitere Parameter wie zum Beispiel das Pfeilgewicht berücksichtigt) schieße, hat sich die Trefferrate wieder deutlich verbessert und meine Adaptionsfähigkeit ist wesentlich gestiegen.      

Der Neurobiologe Henning Beck beschreibt in [7] wie unser Hang zur Ordnung im Lernen, also zum Instanzbasierten Block-Lernen uns „behindert“:

„Stellen Sie sich vor, Sie sind Lehrer an einer Kunstschule und wollen Ihren Kursteilnehmern den typischen Malstil von van Gogh, Monet und Cezanne vermitteln, wie gehen Sie vor? Oder umgedreht gefragt: Sie sollen für eine Prüfung lernen, was das Typische an den Bildern der drei Künstler ist, was würden Sie tun? Würden Sie sich Bilder der Maler anschauen? Ins Museum gehen, die Bilder vielleicht sogar nachmalen? …

…Eine Gruppe lernte genau nach obiger Blockabfertigung: Zunächst sah man sich eine Reihe von Bildern des ersten Künstlers an, machte dann eine kurze Pause, bevor die Bilder des Künstlers Nummer zwei folgten. Bei der anderen Gruppe machte man etwas anderes: Man zeigte die Bilder aller Künstler durcheinandergemischt, machte dann eine Pause und zeigte anschließend eine neue Runde durchmischter Bilder. Was für ein heilloses Durcheinander! So verliert man doch total den Überblick! …

…Das Ergebnis der Studie war jedoch erstaunlich: Ging es in dem anschließenden Test darum, ein zuvor gezeigtes Bild zu erkennen, dann schnitt die erste Gruppe, die blockweise gelernt hatte, besser ab. Ging es jedoch darum, ein neues, zuvor nicht gezeigtes Bild korrekt zuzuordnen, dann war Gruppe zwei mit den durchmischten Bildern besser. Denn diese Gruppe hatte die Bilder nicht nur auswendig gelernt, sondern auch das Typische der Malstile verstanden…

…Im obigen Malstilexperiment gaben drei Viertel der Teilnehmer an, das blockweise Lernen führe zu einem besseren Verständnis der Malstile – selbst nachdem man den finalen Test gemacht hatte, war die Mehrheit überzeugt, weiterhin blockweise lernen zu wollen.“

Ich habe Henning Beck hier so ausführlich zitiert, weil ich das „…Durchmischen von Lerninhalten, …das „Interleaving“…“ seit vielen Jahren in meinen Management 4.0 Trainings anwende und auch dort die Erfahrung mache, dass 50-75% der Teilnehmer das Block-Lernen bevorzugen. – Wie oben geschildert, geht blockweises Lernen mit dem Unvermögen einher, mentale Modelle zu erstellen, die sich auf neue Kontexte adaptiv einstellen. – Dies ist eine zentrale Fähigkeit um Komplexität zu meistern, also dem Handeln unter Unsicherheit und Unüberschaubarkeit.   

Meine Erfahrungen, sei es im Selbst-Training beim Bogenschießen, beim Erstellen von AI-Systemen oder in meinen Management 4.0 Trainings, zeigen, dass die Schnittmenge in diesen drei vordergründig disjunkten Bereichen keineswegs Null ist. – Die hier skizzierten Metabetrachtungen helfen, Einzel-Disziplinen besser zu verstehen, vernetzte Erkenntnisse zu gewinnen und Meta-Lernen anzuregen.

 

[1] Hörnchen D (2021) Die Bogenwerkstatt, https://www.die-bogenwerkstatt.de/, zugegriffen am 15.09.2021

[2] Wikipedia (2021) Traditionelles Bogenschießen, https://de.wikipedia.org/wiki/Traditionelles_Bogenschie%C3%9Fen, zugegriffen am 15.09.2021

[3] Herrigel E. (2010) Zen in der Kunst des Bogenschießens

[4] Zeigermann O (2021) Introduction Deep Learning to Deep Learning with Tensorflow 2, zeigermann.eu, embarc.de/oliver-zeigermann, ein Training der oose.de

[5] Nuhn H (2021) Organizing for temporality and supporting AI systems – a framework for applied AI and organization research, Lecture Notes in Informatics, GI e.V

[6] Géron A (2020) Praxiseinstieg Machine Learning mit Scikit-Learn, Keras und Tesnorflow, O’Reilly, 2. Auflage

[7] Beck H (2021) Die Crux mit der Ordnung, in managerSeminare 276, März 2021, https://www.managerseminare.de/ms_Artikel/Schlauer-lernen-Die-Crux-mit-der-Ordnung,281117, zugegriffen am 15.09.2021