AI & M 4.0: Hybrid Collective Intelligence in Organisation und Gesellschaft

Dieser Blogbeitrag ergänzt meinen vorherigen Blogbeitrag, insbesondere die dort gelisteten Kernaussagen des Buches „The Age of AI: And Our Human Future“ des ehemaligen amerikanische Außenminister Kissinger sowie des ehemaligen google CEO Schmidt und des MIT Professor Huttenlocher [1].

Hybrid (Collective) Intelligence liegt vor, wenn unsere menschliche (kollektive) Intelligenz durch die (kollektive) Intelligenz von Artificial Intelligence ergänzt wird und sich damit eine Erweiterung der Wahrnehmung unserer Realität ergibt, so dass wir komplexe Fragestellungen beantworten können, die wir ohne AI nicht oder nur mit deutlich größerem Aufwand beantworten könnten. Diese Definition lehnt sich an diejenige in [2] an.

Hybrid (Collective) Intelligence führt insbesondere für das Projekt Management zu drei zentralen Veränderungen:

  • Der Innovationsprozess wird sich substanziell verändern, da ein oder mehrere AI Systeme den F&E Suchraum allein oder in Zusammenarbeit mit Menschen erheblich erweitern und verändern werden [3].
  • Das (Projekt) Management hat zu berücksichtigen, dass Aufgaben zwischen Mensch und AI, alleine oder zusammen, zu verteilen sind. – Entscheidungsprozesse werden sich in dieser Zusammensetzung erheblich verändern [4]. – Man siehe hierzu auch die Liste an AI/ML Erweiterungen im letzten Blog-Beitrag.
  • AI Systeme werden in nahezu alle Projektlösungen einfließen und damit wird AI zur Kernkompetenz in der Projektarbeit. Gleichzeit sind die Auswirkungen der AI Projektlösungen für die Stakeholder, die Gesellschaft und die Natur zu berücksichtigen.

Ich verwende als Definition von Intelligenz eine recht unübliche Definition, die meines Erachtens aber umso treffender ist. Diese Definition wurde wohl erstmals von Alex Wissner-Gross vorgeschlagen [5, 6]: “Intelligence is the ability to maximize future options in order to accomplish complex tasks.” – Diese Definition lässt sich u.a. in eine mathematische Gleichung übersetzen und ist universell auf alle Objekte (belebte, unbelebte, soziale) anwendbar. Im Kontext von AI bedeutet dies zum Beispiel, dass eine AI zur Natural Language Processing (NLP) nicht nur die trainierten Texte oder recht ähnliche in Frage-Antwort Situationen wiedererkennt, sondern die Flexibilität besitzt auch Fragen zu beantworten, die nicht genau den trainierten Fragen entsprechen. Neben der neuronalen Architektur des Neuronalen Netzwerkes wird dies vor allem durch die vielen Parameter-Freiheitsgrade erreicht. – Die Freiheitsgrade von State-of-The-Art AI NLP Systemen umfassen aktuell mehrere 100 Million Parameter.

Die Fähigkeit zukünftige Optionen zu maximieren, ist also die Fähigkeit Freiheit bzw. freies Handeln unter antizipierten zukünftigen Randbedingungen zu maximieren. Falls wir nicht wollen, dass die AI „ihre Freiheit“ (in Zukunft) auf Kosten unserer Freiheit maximiert, ist es notwendig, Randbedingungen für sie zu setzen. Dies bedeutet die Einführung einer Governance für Hybride (Collective) Intelligence (kurz HCI Governance), die zudem adaptiv, also in einem PDCA-Zyklus, in die Zukunft fortzuschreiben ist.
Die Einführung einer HCI Governance wird umso notwendiger, je mehr sich die AI von einer schwachen AI zu einer starken (und allgemeinen) AI oder Superintelligenz entwickelt [7, 8]. – Die genaue Verortung des aktuellen Intelligenzgrades der AI-Systeme und deren zukünftiger Entwicklung ist jedoch nicht wesentlich, denn wir wissen heute schon, dass eine HCI Governance Not tut, da neben den Segnungen der Realitätserweiterungen durch AI auch schon Freiheitseinschränkungen (u.a. Diskriminierungen, fake news, Beeinflussung von demokratischen Wahlen) durch AI aufgetreten sind.

Peeters et al. haben unlängst in ihrem sehr lesenswerten Artikel „Hybrid Collective Intelligence in a Human-AI Society“ drei verschiedene Basis-Haltungen zum Umgang mit AI identifiziert [9]:

  • Technology-centric perspective
  • Human-centric perspective
  • Collective-Intelligence perspective

Das Bemerkenswerte ihrer Analyse, die durch das niederländische Verteidigungsministerium gesponsort wurde, ist, dass sie für jede dieser Haltungen (im Artikel sprechen sie von „perspectives“) Glaubenssysteme und dazugehörige Kontexte identifiziert haben. – Also ganz im Sinne von Management 4.0.

Ich nenne hier, als Beispiel, nur jeweils einen Glaubenssatz pro Haltung:

  • Technology-centric perspective: “When sufficiently developed, AI technology can applied to solve any problem.”
  • Human-centric perspective: “Artificial intelligence only exhibits part of human cognition and is therefore insufficient for many real-world problems.”
  • Collective-intelligence perspective: “Intelligence should not be studied at the level of individual humans or AI-machines, but at the group level of humans and AI-machines working together.”

In [10] werden die EU-Haltung und die USA-Haltung miteinander verglichen: Die EU-(Administrations-)Haltung ist tendenziell eine human-centric perspective und die USA-Haltung ist tendenziell eine technology-centric perspective. – Hieraus erklären sich u.a. die diversen Bestrebungen der EU-Administration amerikanische AI-Konzerne wie google, meta/facebook, apple und amazon durch Gesetze und Strafen zu regulieren.  

Mit Hilfe dieser drei Basis-Haltungen bzw. -Perspektiven zur AI lässt sich auch die Grundhaltung in [1] beschreiben: Sie ist tendenziell eine human-centric perspective ergänzt um die technology-centric perspectice und die collective-intelligence perspective. Im Wissen um diese, aber insbesondere auch wegen der in den USA vorherrschenden technology-centric perspective, fordern die Autoren eine Regulation der AI, also die Einführung einer Governance für AI Systeme. Dies ist umso wichtiger, da auf der Basis der technology-centric perspective schon heute weltweit AI gestützte Waffensysteme entwickelt und genutzt werden.

Berühmte Vertreter der technology-centric perspective in den USA sind Peter Kurzweil [11] und die mit ihm verbundene Singularity University [12]. – Ein Kennzeichen dieser Haltung ist der Glaube, dass in absehbarer Zukunft, im Jahre 2045, die Fähigkeiten der AI diejenigen der Menschheit übersteigen werden.

In [9] wird betont, dass keine der obigen Basis-Haltungen richtiger oder besser ist, sondern dass der Kontext die Basis-Haltung bestimmen sollte. – Was leider nur selten geschieht. – In [13] wird die zentrale Bedeutung der Reflexion und der kritischen Auseinandersetzung mit dem sozialen Kontext, also den aktiven Werten, Glaubensätzen und Prinzipien für das Design, die Implementierung und die Operationalisierung von AI Systemen diskutiert. Falls die Metakompetenz für diese (Selbst-) Reflexion und kritische Auseinandersetzung nicht vorhanden ist, wird eine AI Ethik nicht angenommen und damit auch nicht verantwortungsvoll umgesetzt. In [14] habe ich die “Forderung” aufgestellt, dass Projekte mit hoher Komplexität, eine türkis/teal Kultur benötigen: “Ideally, this requires a mindset of all key stakeholders that also contains red, blue and orange value meme components (red means power orientation, blue means control and order orientation, and orange means entrepreneurship and linear-scientific-thinking orientation), but is mainly shaped by the transformational value meme components, namely green (compassion), yellow (nonlinear networked system thinking) and teal (holistic-transcendental orientation).” Alle Teammitglieder und insbesondere der Projektleiter sollten über die Metakompetenz verfügen, ihre eigenen Werte und Glaubenssätze im jeweiligen Kontext kritisch zu hinterfragen, um bewusst AI Systeme ethisch verantwortungsvoll zu designen, zu implementieren und zu operationalisieren.  

Meine persönlich präferierte Basis-Haltung ist die collective-intelligence perspective. Wenn ich AI Systeme erstelle liegt meine Haltung hingegen eher auf der technology-centric perspective und im Schreiben dieses Blog-Beitrages eher auf der human-centric perspective.    

Schaut man sich die Definitionen für AI der großen AI-Konzerne an, so lassen diese eine recht eindeutige AI-Haltung der jeweiligen Autoren erkennen:

IBM: “Artificial intelligence leverages computers and machines to mimic the problem-solving and decision-making capabilities of the human mind.” [15]: technology-centric perspective

Microsoft (deutsch): „Unter künstlicher Intelligenz (AI) verstehen wir Technologien, die menschliche Fähigkeiten im Sehen, Hören, Analysieren, Entscheiden und Handeln ergänzen und stärken.“ [16]: collective-intelligence perspective

Microsoft (amerikanisch): “Artificial intelligence (AI) is the capability of a computer to imitate intelligent human behavior. Through AI, machines can analyze images, comprehend speech, interact in natural ways, and make predictions using data.” [17]: technology-centric perspective. – Die Microsoft AI Internetseite [18] „AI for Good“ zeigt hingegen eine eher human-centric oder collective-intelligence perspective.

Google CEO: “At its heart, AI is computer programming that learns and adapts. It can’t solve every problem, but its potential to improve our lives is profound. At Google, we use AI to make products more useful—from email that’s spam-free and easier to compose, to a digital assistant you can speak to naturally, to photos that pop the fun stuff out for you to enjoy.” [19]: collective-intelligence perspective

Die Internetseite von google [20] und diejenige von meta/facebook [21] lassen eine Mischung aus technology-centric- und collective-intelligence-perspective erkennen.

Die OECD hat im Jahre 2019 ihr Dokument „Artificial Intelligence in Society“ vorgelegt, und definiert dort ihre human-centric perspective, die sie auch so nennt [22]: Hiernach müssen AI Systeme u.a. Menschenwürde und -rechte sowie die Demokratie gewährleisten, indem sie u.a. transparent, nachvollziehbar, vertrauenswürdig, sicher und steuerbar sind und bleiben. – Eine gestaltende Auseinandersetzung mit dem sozio-technischen System Mensch-Künstliche Intelligenz, im Sinne des Designs einer Governance, findet jedoch nicht statt.

Eine ähnliche Aussage ergibt sich für Deutschland: In [23] werden unter dem Titel „The making of AI Society: AI futures frames in German political and media discourses” die sogenannten „AI future frames“ für Deutschland untersucht. – AI future frames sind mentale Rahmen, in denen die AI Zukunft gesetzt wird. Das Ergebnis ist eher ernüchternd: „By mirroring the past in the future, alternative future visions are excluded, and past and current assumptions, beliefs, and biases are maintained. Despite the allegedly disruptive potential of emerging AI.” Hiernach denkt die deutsche Politik die neoliberale Politik der letzten Jahrzehnte unter dem Label „AI Made in Germany“ oder AI German einfach fort: „successful innovation = welfare generating future = political stability“. Die Lippenbekenntnisse der deutschen politischen Administration bis zur Wahl 2021 sind human-centric; im Tun überlassen sie die AI Governance dem Markt und eine AI Ethik explizit den deutschen Industrieunternehmen. – Eine entsprechende politische Governance, die den zentralen Aussagen in [1] Rechnung trägt, gibt es nicht. – Eine Einbettung in eine europäische AI Strategie fehlt völlig!

Die EU Kommission hat letztes Jahr in [24] einen Vorschlag für ein Regulationspapier erstellt, das in erster Linie als harmonisierende Referenz für die EU Administration dienen soll: Ein seitenstarkes Papier mit vielen Details; ich vermisse mal wieder ein Großes Bild, das zu einem Collective Mind in der EU (Administration) führen könnte. 

Wie könnten die Eckpfeiler eines Großen Bildes einer AI bzw. HCI Governance aussehen? Hier ein Vorschlag:

Rahmenparameter:

Landesspezifische AI Governance Systeme sind in eine europäische AI Governance eingebettet. – Die Strukturen der AI Governance sind auf allen europäischen Ebenen ähnlich. – Die (europäische) AI Governance folgt in ihrer Struktur einer Ziel-Hierachie: Vom Großen Bild zum Detail. Der transformative Charakter der AI Governance ist in die Governance einer ökologisch-ökonomischen Transformation (u.a. Nachhaltigkeit für Natur, Tier und Mensch, hin zu einer an sozialer Gerechtigkeit und Gleichheit orientierten Ökonomie, die Wachstum nicht als Allheilmittel verkauft) eingebettet

Kontrollparameter:

Die Kontrollparameter orientieren sich an den zentralen Aussagen aus [1]: Eine europäische AI Ethik und Gesetzgebung sorgt für eine Regulation der AI Freiheiten. Die AI Ethik und Gesetzgebung wird von der Politik gestaltet. Z.B. heißt dies, dass der Wert AI Transparenz politisch definiert wird und gesetzlich verankert wird.- Dies könnte zum Beispiel heißen, dass AI Systeme in Europa vor staatlichen Organen nach Bedarf offengelegt werden müssen.

Da AI Systeme unsere Welt transformieren, ist es notwendig dafür zu sorgen, dass die Schere zwischen AI-Wissenden und AI-Nichtwissenden nicht zu einer Verschärfung von Ungleichheit führt. Ein entsprechendes Bildungskonzept ist notwendig: AI gehört als Pflichtfach in die Schulen und AI gehört in die Curricula aller universitären Disziplinen.

Ordnungsparameter:             

Als Großes Bild für den Ordnungsparameter schlage ich vor „European Ecosystem for Hybrid Collective Intelligence“. Die Ausgestaltung dieses Großen Bildes heißt u.a. dass neben einer gemeinsamen europäischen AI Governance eine gemeinsame AI Infrastruktur aufgebaut wird. – Es werden Mechanismen bereitgestellt, die das Silo-Denken und -Handeln von Industrie und politischen Administrationen auflösen. U.a. wird eine „AI für Jedermann“ aufgebaut und die die obigen drei Sichten human-centric, technology-centric und collective intelligence integriert: Die sozio-technische HCI Integration wird also bewusst europäisch gestaltet.  

 

[1] Kissinger H A, Schmidt E, Huttenlocher D (2021) The Age of AI: And Our Human Future, kindle edition
[2] Dominik Dellermann, Adrian Calma, Nikolaus Lipusch, Thorsten Weber, Sascha Weigel, Philipp Ebel (2021) The future of human-AI collaboration: a taxonomy of design knowledge for hybrid intelligence systems, arXiv.org > cs > arXiv:2105.03354
[3] Dragos‑Cristian Vasilescu, Michael Filzmoser (2021) Machine invention systems: a (r)evolution of the invention process?, Journal AI & Society, January 2021
[4] Phanish Puranam (2021) Human–AI collaborative decision‑making as an organization design Problem, Journal of Organization Design (2021) 10:75–80
[5] Alex Wissner-Gross (2022) A new equation for intelligence, https://www.youtube.com/watch?v=auT-pA5_O_A, march 2020, zugegriffen am 07.02.2022
[6] Ron Schmelzer (2022) https://www.forbes.com/sites/cognitiveworld/2020/02/27/cant-define-ai-try-defining-intelligence/?sh=6f658a955279, Forbes Blog February 2020, zugegriffen am 07.02.2022
[7] Bernard Marr (2022) The Key Definitions Of Artificial Intelligence (AI) That Explain Its Importance, Forbes Blog February 2018, https://www.forbes.com/sites/bernardmarr/2018/02/14/the-key-definitions-of-artificial-intelligence-ai-that-explain-its-importance/?sh=219cbb1f4f5d , zugegriffen am 07.01.2022
[8] Wikipedia (2022) Artificial Intelligence, https://en.wikipedia.org/wiki/Artificial_intelligence, zugegriffen am 07.02.2022
[9] Peeters M M M, van Diggelen J, van den Bosch K, Bronhorst A, Neerinex M A, Schraagen J M, Raaijmakers S (2021) Hybrid Collective Intelligence in a Human-AI Society, in AI & Society Journal, March 2021
[10] Roberts H, Cowls J, Hine E, Mazzi E, Tsamados A, Taddeo M, Floridi L (2021) Achieving a ‘Good AI Society’: Coparing the Aims and Progress of the EU and the US, SSRN Journal, January 2021
[11] Kurzweil R (2022) https://www.kurzweilai.net/, zugegriffen am 07.02.2022
[12] Singularity University (2022) https://www.su.org/ , zugegriffen am 07.02.2022
[13] Krijger J (2021) Enter the metrics: critical theory and organizational operationalization of AI ethics, Journal AI & Society, September 2021
[14] Oswald A (2022) The Whole – More than the Sum of Its Parts! Self-Organization – The Universal Principle! in Ding R, Wagner R, Bodea CN (editors) Research on Project, Programme and Portfolio Management – Projects as an Arena for Self-Organizing, Lecture Notes in Management and Industrial Engineering, Springer Nature
[15] IBM (2022) Artificial Intelligence, https://www.ibm.com/cloud/learn/what-is-artificial-intelligence, zugegriffen am 07.02.2022
[16] Microsoft (2022) Künstliche Intelligenz, https://news.microsoft.com/de-at/microsoft-erklart-was-ist-kunstliche-intelligenz-definition-funktionen-von-ki/, zugegriffen am 07.02.2022
[17] Microsoft (2022) Artificial Intelligence Architecture, https://docs.microsoft.com/en-us/azure/architecture/data-guide/big-data/ai-overview, zugegriffen am 07.02.2022
[18] Microsoft (2022) AI for Good, https://www.microsoft.com/en-us/ai/ai-for-good, zugegriffen am 07.02.2022
[19] Sundar Pichai (2022) AI at Google: our principles, https://www.blog.google/technology/ai/ai-principles/, Blog of CEO google, june 2018, zugegriffen am 07.02.2022
[20] Google (2022) Google AI: Advancing AI for everyone, https://ai.google/, zugegriffen am 07.02.2022
[21] Meta AI (Facebook) (2022) Bringing the world closer together by advancing AI, https://ai.facebook.com/, zugegriffen am 07.02.2022
[22] OECD (2019) Artificial Intelligence in Society, Online Version, https://www.oecd-ilibrary.org/sites/eedfee77-en/index.html?itemId=/content/publication/eedfee77-en&_csp_=5c39a73676a331d76fa56f36ff0d4aca&itemIGO=oecd&itemContentType=book
[23] Köstler L, Ossewaarde R (2020) The making of AI Society: AI futures frames in German political and media discourses, in AI & Society Journal, February 2021, Springer Nature
[24] Europäische Kommission (2021) Proposal for a REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL LAYING DOWN HARMONISED RULES ON ARTIFICIAL INTELLIGENCE (ARTIFICIAL INTELLIGENCE ACT) AND AMENDING CERTAIN UNION LEGISLATIVE ACTS, https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:52021PC0206, zugegriffen am 07.02.2022

Metabetrachtungen: Zur Schnittmenge von diesjährigem Physik-Nobelpreis, Künstlicher Intelligenz und Collective Mind

Dieses Jahr wurde der Physik-Nobelpreis unter dem gemeinsamen Label „For groundbreaking contributions to our understanding of complex physical systems.“ an die Physiker Klaus Hasselmann und Syukuro Manabe sowie Giorgio Parisi vergeben. Es ist meines Wissens das erste Mal, dass das Verstehen von komplexen physikalischen Systemen so explizit honoriert wurde. Alle drei Forscher haben den Einfluss von mikroskopischen Zuständen auf makroskopische Zustände untersucht. Bei Klaus Hasselmann ging es um die Auswirkung von (lokalen) Wetterphänomenen auf (globale) Klimaphänomene. Also dem zentralen Problem unserer Tage. Syukuro Manabe wurde für die erstmalige computergestützte globale Klima-Modellierung geehrt.

Giorgio Parisi hat den Nobelpreis für seine Untersuchung von Spingläsern, insbesondere für seinen „great leap  … to introduce a new order parameter“ erhalten [1]. Seine Arbeiten ziehe ich für meine Metabetrachtungen heran.

Spin Gläser sind u.a. Legierungen wie CuMn, wobei das nichtmagnetische Kupfer (Cu) magnetisches Mangan (Mn) mit ca. 13% enthält. Die magnetischen Momente (Spin‘s) der Manganatome sind zufällig, aber fest im Kupferkristall verteilt. Zwischen den Manganatomen können ferromagnetische und antiferromagnetische Wechselwirkungen auftreten. – Je nach Konfiguration der Manganatome müssen diese mit ihren Nachbar-Manganatomen sowohl eine ferromagnetische als auch eine antiferromagnetische Wechselwirkung „befriedigen“. Dies kann auch Atome „frustrieren“. – Spingläser, also Substanzen, die bezüglich des Spins, wie Glas, amorphe Konfigurationen aufweisen und Frustrationen ausbilden, zeichnen sich (oft) nicht mehr nur durch einen einfachen Ordnungsparameter, wie die makroskopische Magnetisierung aus. – Sondern sie bilden viele mikroskopische Zustände aus, die mit dem Einstellen bestimmter Parameter (Rahmen- und Kontrollparameter) zu vielen unterschiedlichen Phasen mit jeweils unterschiedlichen Ordnungsparameter-Ausprägungen führen. Diese Ordnungsparameter-Ausprägungen genügen jedoch einem einheitlichen mathematischen Muster. – Parisi hat dieses „new order parameter“ Muster eingeführt [2].

Ich will versuchen dieses Muster am Beispiel einer sozialen Gruppe, an einem Team, zu erläutern.- Für den ein oder anderen mag dies Physikalismus sein [3], also der Versuch Alles und Jedes mittels Physik zu erklären; für mich ist es das Denken in Modellen und Theorien; und Metabetrachtungen helfen das ein oder andere qualitativ und quantitativ viel besser zu verstehen: Im Management 4.0 modellieren wir zentrale menschliche Eigenschaften mit der sogenannten Dilts Pyramide. Die Dilts Pyramide integriert hierbei ca. 30 unsere Persönlichkeit bestimmende Eigenschaften (Vision, Mission, Zugehörigkeit, Temperament, Werte, Glaubenssätze, Grundannahmen und Prinzipien). Stellen wir uns für den Moment die Pyramide (sie ist ja ein Keil, eine Spitze) als eine Ausrichtung unserer Persönlichkeit vor. Bilden wir eine Gruppe aus Personen mit unterschiedlichen Dilts Pyramiden, so bildet die Gruppe nicht selten (am Anfang) eine „Diltsglas-Organisation“: Die Pyramiden zeigen alle in unterschiedliche Richtungen. Recht selten geschieht es, dass die Pyramiden eine gemeinsame Ausrichtung erfahren, das Team sich also einen Ordnungsparameter, den Collective Mind, erarbeitet. Sehr oft führt die Gruppendynamik in einem Projektteam zu unterschiedlichen Kommunikationskonfigurationen (Zuständen): Unterschiedliche Visionen, Werte oder Glaubenssätze tauchen auf, nicht selten bleiben diese nebeneinander bestehen, ohne dass dies für die Gruppenmitglieder wirklich transparent wird. Damit verbunden sind, wie wir wahrscheinlich alle wissen, auch Frustrationen. Die Kommunikationskonfigurationen sind jedoch nicht beliebig. Die verschiedenen konfigurationsspezifischen Ausrichtungen der Dilts Pyramide der einzelnen Gruppenmitglieder haben nichtverschwindende „Überlappe“, z.B. mögen bestimmte Werte oder Glaubenssätze in verschiedenen Konfigurationen auftauchen. – Sie wirken als „mikroskopische“ Ordnungsparameter, die die makroskopische (Un-) Ordnung bestimmen. Man könnte also einen neuen Ordnungsparameter einführen, der den „Überlapp“ bei allen Teammitglieder misst und aufsummiert. – Damit hat man auch ein Maß für die „Diltsglas-Organisation“ des Teams. – Dieses Vorgehen entspricht dem von Parisi eingeführten neuen Ordnungsparameter für Spingläser. – Der Ordnungsparameter der „Diltsglas-Organisation“ ist damit auch ein Maß für die „Abweichung“ von einem einfachen Ordnungsparameter, dem Collective Mind, bei dem alle Dilts Pyramiden im Rahmen der Teamaktivitäten in eine Richtung zeigen.

Man kann die Analogie noch erweitern: Physikalische Spingläser können durch äußere magnetische Felder in der Ausbildung des Parisi-Ordnungsparameters beeinflusst werden. Auch „Diltsglas-Organisationen“ zeigen ein ähnliches Verhalten, wenn eine (äußere) Beeinflussung einsetzt: Führungskräfte oder Coaches wirken auf die Dilts Pyramiden des Teams ein. – Bei kleinen Einflussnahmen bleibt das „Diltsglas“ erhalten, steigt die Einflussnahme entsteht eine Ausrichtung, die aussieht wie ein Collective Mind. In den meisten Fällen dürfte die Ausrichtung jedoch wieder verschwinden, wenn die Einflussnahme zurückgeht, falls sich bis dahin keine intrinsische Veränderung im Team ausgebildet hat.  

Alles schön und gut, könnte man sagen: Warum macht es Sinn sich mit solchen Metabetrachtungen zu beschäftigen. In der Schrift des Nobel-Komitees [1] wird die Antwort gegeben. Die Modelle zur Erklärung von Spin-Gläsern haben heute sehr viele unterschiedliche Bereich erheblich befruchtet: Verschiedene Gebiete der Physik, der Biologie, der Chemie, der Neurowissenschaften und der Künstlichen Intelligenz. Für die Verbindung von Neurowissenschaften und Systemen Künstlicher Intelligenz wird explizit die Arbeit von John J. Hopfield in [1] genannt. Neuronale Netzwerke können auch als Spinglas Systeme verstanden werden, wenn man die magnetischen Momente durch Neuronen ersetzt. Die Wechselwirkungsparameter zwischen den Spins entsprechen den Gewichten zwischen den Ausgängen einer Neuronen Schicht und den Eingängen der nächsten Neuronen Schicht. Angelegte magnetische Felder entsprechen den Bias-Einstellungen der Neuronen. – Und wie oben geschildert, kann man die Grundprinzipien auch auf soziale Gruppen übertragen.

Die GPM Fachgruppe Agile Management beschäftigt sich seit einem Jahr mit der Nutzung von KI-Systemen im Management 4.0. Insbesondere habe ich mir hierzu zwei Themen ausgesucht:

  • Die Nutzung eines Neuronalen Netzwerkes für die Ermittlung von Persönlichkeitsmerkmalen aus beobachteten Verhaltensweisen.
  • Die Ermittlung des Grades der „Diltsglas-Organisation“ (wie oben geschildert) und des Collective Minds eines Teams aus auditiven Gesprächsprotokollen.

Den technologischen Durchstich für die erste Aufgabe konnte ich inzwischen erfolgreich abschließen. Ich bin also optimistisch, dass ich meine nächsten Blogbeiträge der Ausgestaltung dieser beiden Themen widmen werde. 

           

[1] The Nobel Committee for Physics (2021) For groundbreaking contributions to our understanding of complex physical systems, Scientific background on the Nobel Prize in Physics 2021.

[2] Parisi G (2008) The physical Meaning of Replica Symmetry Breaking, arXiv

[3] Wikipedia (2021) Physikalismus, https://de.wikipedia.org/wiki/Physikalismus_(Ontologie), zugegriffen am 29.10.2021

[4] Hopfield J.J. (1982) Neural networks and physical systems with emergent collective computational abilities, Proc. Nat. Acad. Sci. USA, Vol. 79 Biophysics

Metabetrachtungen: Zur Schnittmenge von Intuitivem Bogenschießen, Künstlicher Intelligenz und Management 4.0

Ende letzten Jahres habe ich einen WDR-Fernseh-Beitrag zur Bogenwerkstatt gesehen [1]. Dieser Beitrag hat meine verschüttete Kindheitsleidenschaft zum Bogenschießen wieder offengelegt. Seither übe ich mich mit großer Freude im sogenannten Intuitiven Bogenschießen [2]. Beim Intuitiven Bogenschießen bringt allein das „Körpergefühl und die Erfahrung des Schützen den Pfeil ins Ziel – rein intuitiv ohne Zieltechnik“. Intuitives Bogenschießen hat eine recht große Nähe zum japanischen Zen-Bogenschießen. – Das Buch des Philosophen Eugen Herrigel, der nach sechs! Jahren harten Übens (genüsslich zu lesen) seine Zen Bogenschieß-Prüfung ablegte gibt u.a. einen wunderbaren Eindruck von der Aussage „rein intuitiv ohne Zieltechnik“. – Die Fähigkeit sich an unterschiedliche Kontexte anzupassen, wird insbesondere beim 3D-Parcours Schießen im Gelände besonders herausgefordert.

Intuitives Bogenschießen wird auch als therapeutisches Bogenschießen in Kliniken eingesetzt. – Fokus, Adaption und Intuition sind zentrale Elemente des Intuitiven Bogenschießens. – Die begriffliche Nähe zum Management 4.0 ist offensichtlich. Ich werde später aufzeigen, dass auch eine Schnittmenge zur Künstlichen Intelligenz mittels Deep Learning gegeben ist.

Vor kurzem hatte ich die Gelegenheit und das Glück an einem dreitägigen Kurs zum Thema Deep Learning mittels Tensorflow teilzunehmen [4]. Tensorflow ist die von google u.a. über colab.research.google.com zur Verfügung gestellte Plattform für das Erstellen von Deep Learning Systemen der Künstlichen Intelligenz. – Das Eintauchen in diese und weitere Plattformen des Machine Learnings (ML) ist überwältigend: Es ist kein Programmieren mehr im mir bisher bekannten Sinne, sondern entspricht eher dem Design und Konfigurieren von Systemen auf sehr hohem Abstraktionsniveau. – Den erreichten (globalen) Fortschritt im ML konnte ich mir bisher in dieser nahezu „unendlichen Fülle“ nicht vorstellen. Deep Learning ist eine Form von technischer Selbstorganisation – das Design und die Konfiguration dienen der Ausgestaltung der Selbstorganisationsparameter des neuronalen Netzwerkes; und damit ist der Bezug zu Management 4.0 schon erkennbar.          

Vor einem Jahr haben wir in der Fachgruppe Agile Management eine Arbeitsgruppe ins Leben gerufen, die sich mit der Anwendung von Künstlicher Intelligenz im Projekt Management beschäftigt: Helge Nuhn hat kürzlich einen Übersichtsartikel zu Stand und Potential der Nutzung von Artificial Intelligence Systemen (AI Systemen) in temporären Organisationen und im Projekt Management erstellt [5].

In allen drei Bereichen – Intuitivem Bogenschießen, Künstlicher Intelligenz und Management 4.0 – ist Lernen das Schlüsselelement, um das System Mensch, das technische System Neuronales Netzwerk und das soziale System Team oder Organisation auf das Umfeld, also auf den jeweiligen Kontext, auszurichten.

In dem Standardwerk zu Machine Learning (ML) von Aurélien Géron charakterisiert er maschinelle Lernverfahren u.a. durch die Gegenüberstellung von Instanzbasiertem Lernen und Modellbasiertem Lernen: Instanzbasiertes Lernen ist dem Auswendiglernen sehr nahe. – Die Maschine lernt vordefinierte Objekt-Beispiele (Instanzen) einfach auswendig und wendet ein sogenanntes Ähnlichkeitsmaß zum Identifizieren von neuen Objekten (Instanzen) an. Ist die Ähnlichkeit hoch genug werden die neuen Objekte maschinell den vordefinierten Klassen zugeordnet. Instanzen können spezifische Kunden, Äpfel, eMails usw. sein. Das Ähnlichkeitsmaß wird über Regeln definiert und wird im „klassischen“ Sinne programmiert. – Die Regeln stellen eine äußerst einfache Form eines von außen (durch den Programmierer) vorgegebenen Modells dar. Das eigentliche Modellbasierte Lernen funktioniert jedoch völlig anders: Einem System werden Beispieldaten übergeben und das System entwickelt hieraus ein Modell und dieses Modell wird zur Vorhersage verwendet. Das Modellbasierte Lernen ist also dem wissenschaftlichen Vorgehen bei der Entwicklung von Erkenntnissen nicht unähnlich. Deep Learning lässt sich nach dem mehr oder weniger an Selbständigkeit beim AI-Lernen unterscheiden: Supervised Learning, Unsupervised Learning und Reinforcement Learning.

Zwischen Instanzbasiertem Lernen und Modellbasiertem Lernen liegt ein fundamentaler Unterschied. – Dies wird in dem Moment offensichtlich, wenn ich die Verbindung zum Management 4.0 und dem Lernen im einfachen oder komplizierten Kontext und dem Lernen im komplexen Kontext ziehe. Das Instanzbasierte Lernen ist das Lernen an Best Practice, also an Beispiel-Objekten wie einem Beispiel-Projekt oder an einem Beispiel-Verfahren. Das Ähnlichkeitsmaß ist in diesem Fall die Nähe zur eigenen Praxis: Der Lernende sucht nach einem Projekt, das möglichst zu seiner bisherigen Praxis passt. Dies kann heißen, dass Beispiele aus anderen Branchen nicht akzeptiert werden, dass nur dann das Beispiel passt, wenn der Lernende davon ausgeht, dass im Best Practice ein ähnliches Mindset vorliegt oder dass der WIP (Work-in-Progress) wie in der eigenen Organisation ähnlich groß ist, usw…. In jedem Fall wird der Projektkontext des Best Practices nur ungenügend abgebildet, es findet keine oder eine nur sehr geringe Abstraktionsleistung statt und die Übertragbarkeit ist deshalb mehr als fraglich.

Lernen im Management 4.0 ist Modellbasiertes Lernen. Instanzen sind nicht die Basis des Lernens, allenfalls um zu zeigen, dass man mit dem Modell sehr gut Probleme (Instanzen) lösen kann, die man vorher noch nie gesehen hat. – Falls das Modell jedoch nicht erfasst wird, erzeugt dies bei einem an Instanzbasiertes Lernen gewöhnten Menschen keine Erkenntnis: Da das Modell sich nicht erschließt, erschließt sich auch nicht die Lösung; Modell und Lösung sind unpraktisch.         

Mit dieser Erkenntnis sehr eng verbunden ist das sogenannte „Overfitting“ im ML: Man kann ein Neuronales Netz extrem gut mit einem gewaltig großen Datensatz (zum Beispiel Tier-Bildern) trainieren. – Die ermittelte Trefferrate ist fantastisch, so lange Bilder aus dem Trainingsdatensatz verwendet werden. – Trotzdem versagt das Netz bei einem bisher unbekannten Bild die Hundeart Spitz zu erkennen, und verortet den Spitz als Tyrannosaurus Rex. Der Kontext in dem der Spitz gezeigt wurde, war anders als bei den Trainingsdaten: Das AI-System konnte aufgrund der geringen Datenvariabiltät kein hinreichend abstraktes Modell ausbilden, um den Spitz in einem andersartigen Kontext zu erkennen. – Das Modell war sozusagen im Instanzbasierten Lernen hängen geblieben.

Beim Bogenschießen machte ich eine ähnliche Erfahrung im Selbsttraining: Ich stellte mich mit sehr vielen Schüssen (und ich meine hunderte, wenn nicht tausende Schüsse) auf einen bestimmten Kontext ein und die Trefferrate war sehr gut! – Eugen Herrigel beschreibt in seinem Buch wie er 4 Jahre aus einem Meter Distanz zum Ziel die Rituale des Zen-Bogenschießens einübt, um dann ad hoc mit einer 60 Meter Distanz konfrontiert zu werden, an der er über Monate kläglich scheiterte.

Bogenschießen unterliegt vielen, wahrscheinlich einigen hundert Parametern: Einer der offensichtlichen Kontext-Parameter ist die Entfernung zum Ziel. Änderte ich in der Anfangszeit die Entfernung ging meine Trefferrate deutlich runter. Ich hatte meine Intuition, mein Gehirn (d.h. mein neuronales Netzwerk), mittels Instanzbasiertem Lernen trainiert. Mit der Hinzunahme weiterer Entfernungen im 3D-Parcours wurde meine Trefferrate immer schlechter, um nicht zu sagen chaotischer. Mein Gehirn hat es aufgrund der vielen Parameter nicht geschafft, von allein eine Intuition, also ein mentales Modell, auszubilden, das mir zu einer besseren Trefferrate verhilft. Bei künstlichen Neuronalen Netzwerken hat man eine ähnliche Beobachtung gemacht: AI-Systeme können ebenfalls „Frustration“ ausbilden, sei es, dass sie in einem System-Zustand verharren oder „chaotische“ Reaktionen zeigen.  

Die Trefferrate wurde erst wieder deutlich besser als ich meiner Intuition auf die Sprünge half. Ich dachte mir ein einfaches Modell aus: Dieses Modell beruht auf der Erkenntnis, dass der Pfeilflug eine Wurfparabel beschreibt. Man spricht auch von ballistischem Schießen. Ist die Distanz gering (ca. 20 m) merkt man vielfach nichts von dieser Wurfparabel. – Vielfach bedeutet, dass die anderen Parameter, wie zum Beispiel Pfeilgewicht, Bogenstärke, usw. dies ermöglich. Im Falle meines Bogens und meiner Pfeile wird die Wurfparabel ab 20 m immer stärker sichtbar. Das Modell lautet aktuell: Richte den Pfeil in einer geraden Linie auf das Ziel aus, auch wenn es 30 oder 40 Meter entfernt ist, schätze die Entfernung und hebe den Bogen in Abhängigkeit von der Entfernung leicht an. Leicht anheben bedeutet maximal 1-2 Winkelgrad. – Ein Winkelgrad kann durchaus im Ziel eine Abweichung von 50 cm oder mehr hervorrufen. – Also eine ziemliche Anforderung an Intuition und Motorik. Seit ich mit diesem Modell (das noch etwas umfangreicher ist, und weitere Parameter wie zum Beispiel das Pfeilgewicht berücksichtigt) schieße, hat sich die Trefferrate wieder deutlich verbessert und meine Adaptionsfähigkeit ist wesentlich gestiegen.      

Der Neurobiologe Henning Beck beschreibt in [7] wie unser Hang zur Ordnung im Lernen, also zum Instanzbasierten Block-Lernen uns „behindert“:

„Stellen Sie sich vor, Sie sind Lehrer an einer Kunstschule und wollen Ihren Kursteilnehmern den typischen Malstil von van Gogh, Monet und Cezanne vermitteln, wie gehen Sie vor? Oder umgedreht gefragt: Sie sollen für eine Prüfung lernen, was das Typische an den Bildern der drei Künstler ist, was würden Sie tun? Würden Sie sich Bilder der Maler anschauen? Ins Museum gehen, die Bilder vielleicht sogar nachmalen? …

…Eine Gruppe lernte genau nach obiger Blockabfertigung: Zunächst sah man sich eine Reihe von Bildern des ersten Künstlers an, machte dann eine kurze Pause, bevor die Bilder des Künstlers Nummer zwei folgten. Bei der anderen Gruppe machte man etwas anderes: Man zeigte die Bilder aller Künstler durcheinandergemischt, machte dann eine Pause und zeigte anschließend eine neue Runde durchmischter Bilder. Was für ein heilloses Durcheinander! So verliert man doch total den Überblick! …

…Das Ergebnis der Studie war jedoch erstaunlich: Ging es in dem anschließenden Test darum, ein zuvor gezeigtes Bild zu erkennen, dann schnitt die erste Gruppe, die blockweise gelernt hatte, besser ab. Ging es jedoch darum, ein neues, zuvor nicht gezeigtes Bild korrekt zuzuordnen, dann war Gruppe zwei mit den durchmischten Bildern besser. Denn diese Gruppe hatte die Bilder nicht nur auswendig gelernt, sondern auch das Typische der Malstile verstanden…

…Im obigen Malstilexperiment gaben drei Viertel der Teilnehmer an, das blockweise Lernen führe zu einem besseren Verständnis der Malstile – selbst nachdem man den finalen Test gemacht hatte, war die Mehrheit überzeugt, weiterhin blockweise lernen zu wollen.“

Ich habe Henning Beck hier so ausführlich zitiert, weil ich das „…Durchmischen von Lerninhalten, …das „Interleaving“…“ seit vielen Jahren in meinen Management 4.0 Trainings anwende und auch dort die Erfahrung mache, dass 50-75% der Teilnehmer das Block-Lernen bevorzugen. – Wie oben geschildert, geht blockweises Lernen mit dem Unvermögen einher, mentale Modelle zu erstellen, die sich auf neue Kontexte adaptiv einstellen. – Dies ist eine zentrale Fähigkeit um Komplexität zu meistern, also dem Handeln unter Unsicherheit und Unüberschaubarkeit.   

Meine Erfahrungen, sei es im Selbst-Training beim Bogenschießen, beim Erstellen von AI-Systemen oder in meinen Management 4.0 Trainings, zeigen, dass die Schnittmenge in diesen drei vordergründig disjunkten Bereichen keineswegs Null ist. – Die hier skizzierten Metabetrachtungen helfen, Einzel-Disziplinen besser zu verstehen, vernetzte Erkenntnisse zu gewinnen und Meta-Lernen anzuregen.

 

[1] Hörnchen D (2021) Die Bogenwerkstatt, https://www.die-bogenwerkstatt.de/, zugegriffen am 15.09.2021

[2] Wikipedia (2021) Traditionelles Bogenschießen, https://de.wikipedia.org/wiki/Traditionelles_Bogenschie%C3%9Fen, zugegriffen am 15.09.2021

[3] Herrigel E. (2010) Zen in der Kunst des Bogenschießens

[4] Zeigermann O (2021) Introduction Deep Learning to Deep Learning with Tensorflow 2, zeigermann.eu, embarc.de/oliver-zeigermann, ein Training der oose.de

[5] Nuhn H (2021) Organizing for temporality and supporting AI systems – a framework for applied AI and organization research, Lecture Notes in Informatics, GI e.V

[6] Géron A (2020) Praxiseinstieg Machine Learning mit Scikit-Learn, Keras und Tesnorflow, O’Reilly, 2. Auflage

[7] Beck H (2021) Die Crux mit der Ordnung, in managerSeminare 276, März 2021, https://www.managerseminare.de/ms_Artikel/Schlauer-lernen-Die-Crux-mit-der-Ordnung,281117, zugegriffen am 15.09.2021