AI & QC & M 4.0: Alles Quantum? oder von Quantum Computing Modell-Archetypen

Ein beeindruckender Podcast, erstellt von NotebookLM, fasst den Blog-Beitrag in englischer Sprache zusammen:

 

‚Alles Quantum?‘, Hinter dieser Frage verbirgt sich eine der spannendsten ungelösten Fragen der Physik: Gibt es eine einheitlich Quanten-Theorie, die die Welt des Kleinen (Quanten) und die Welt des Großen (Klassisch) integriert? Seit ungefähr 100 Jahren wird nach einer solchen Theorie gesucht.

Abbildung 0: Bild erzeugt mittels Dall-E: Die 7 Modelle des Blog-Artikels symbolisch dargestellt als Wissenschaftler, die um Erkenntnis kämpfen. Die Darstellung zeigt die Wissenschaftler auf einem futuristischen, quantenmechanischen Schlachtfeld.

In diesem Blog gehen wir es viel unbedeutender an: Ich stelle die von mir bisher erstellten Collective Mind Modelle (CM Modelle) aus der Welt der Quanten und der ‚klassischen‘ Welt zusammen und beleuchte deren Aussagemöglichkeiten. Diese Modelle lassen sich in drei Kategorien einteilen: Quantum-Modelle, die vollständig auf Prinzipien der Quantenmechanik beruhen. – Klassische Modelle, die keine Prinzipien der Quantenmechanik enthalten. – Hybride Modelle, die Prinzipien der Quantenmechanik und der klassischen Welt enthalten. Diese drei Modell-Kategorien zeigen in ihren Aussagemöglichkeiten verschiedene Potentiale, werfen teilweise neue Fragen auf und gehen damit deutlich über ihre Grenzen hinaus. Die vorgestellten Modell sind Modell-Archetypen, die ähnlich in völlig anderen wissenschaftlichen oder industriellen Anwendungsbereichen verwendet werden. Alle Modelle wurden unter großer Mithilfe von ChatGPT-o1 erstellt. Die Menge aber auch die völlig unterschiedlichen Modell-Herangehensweise, erstellt in einer erstaunlich kurzen Zeit, verdeutlichen die enorme Leistungssteigerung der hybriden kollektiven Intelligenz von Maschine und Mensch:   

Modell 1 – Agent Based Modelling der Teaminteraktionen: Dieses (bisher) klassische Modell verwendet Agent Based Modelling, um Team-Interaktionen zu beleuchten. Mitglieder eines Teams werden als Agenten modelliert. Agenten sind (stark vereinfachte) Repräsentanten von Menschen. Im Blog vom Juni 2023 ‚AI & M 4.0: (Collective Intelligence)**2 – Collective Mind Agent Based Model mit GPT-4/chatGPTplus’ wird ein Team mit 7 Teammitgliedern und einer unterschiedlichen Anzahl an Stakeholdern modelliert. Den Teammitgliedern werden feste MBTI Persönlichkeitsmerkmale zugewiesen und die Stakeholder erhalten per Zufall gemäß der MBTI Verteilung in der westlichen Welt ihre Persönlichkeit. Jedem der Agenten wird per Zufall eine 3-Ebenen Ziel-Hierarchie, bestehend aus einer abstrakten Zeichenkette pro Ebene, zugewiesen. Der Collective Mind (CM) im Team und auch im Stakeholder-Umfeld ist maximal, wenn alle Teammitglieder im Team (und im Stakeholder-Umfeld) die gleiche Ziel-Hierarchie haben. Der Kommunikationsaustausch wird durch die Persönlichkeitsprofile und eine Lernrate (getrennt nach Team und Stakeholdern) bestimmt. Dieses Setting und die Definition des Collective Mind über die Ziel-Hierarchie entspricht der Theorie und Praxis im Management 4.0: Die Ziel-Hierarchien gleichen sich mit unterschiedlichen Zeitskalen im Team und im Stakeholder-Umfeld an. Die Zeitskalen hängen von der Lernrate sowie der Team-Zusammensetzung bzw. Stakeholder-Zusammensetzung ab. Damit ist es möglich, den Einfluss der Persönlichkeit auf die zeitliche Dynamik des CM zu untersuchen und optimale Team-Zusammensetzungen zu studieren. Mit der Anbindung von KI-Systemen werden (zukünftig) KI-Agenten im Agent Based Modelling verwendet werden. – Dies ist eine Entwicklung, die vor kurzem einen neuen KI-Hype ausgelöst hat. In Zukunft werden sicherlich Agenten zusätzlich mit Quantum Eigenschaften (siehe nachfolgende Modelle) ausgestattet. Voraussetzung hierfür ist eine entsprechend effiziente hybride Hardware, bestehend aus klassischer und Quantum Hardware.

Modell 2 – Eigenvektoren der CM Ähnlichkeitsmatrix Analyse: Dieses klassische Modell beruht auf der Grundidee, Ähnlichkeiten der Kommunikation in einem Team oder in einer Gruppe für die Messung des CM zu verwenden. Hierzu wird die Kommunikation mittels zweier Teile, dem gesprochene Wort und der nonverbale Kommunikation über Sentiments (Emotionen), ausgedrückt.  Zentrale Größe ist deshalb eine komplexe Ähnlichkeitsmatrix CM, die aus zwei Teilen besteht. Die Ähnlichkeitsmatrix CM = Matrix der Text-Ähnlichkeiten + i* Matrix der Sentiments-Unterschiede. Für die Ähnlichkeitsmatrix CM lassen sich Eigenvektoren und Eigenwerte berechnen. Der Eigenvektor mit dem höchsten Eigenwert wird als CM Vektor interpretiert und der dazugehörige Eigenwert gibt die relative Stärke des CM an. Die Elemente des CM Vektors repräsentieren die Beitragsstärken der einzelnen Gruppen- oder Teammitglieder zum CM. Auf dieser Basis wurde im Blog ‚AI & M 4.0: Markus Lanz vom 30. Mai 2024: Eine Collective Mind Analyse‘ vom Juni 2024 die Gruppendynamik einer Gesprächsrunde analysiert. Es hat sich gezeigt, dass eine Untergruppe der Gesprächsrunde bestehend aus den Teilnehmern 2,4 und 5, bzw. in der Notation des nachfolgenden Modells 3 die Gruppenmitglieder B,D,E, im Wesentlichen den Collective Mind gestalten. Es ist also möglich, Kommunikationsmuster inkl. der nonverbalen Kommunikation transparent zu machen und die Träger des CM zu identifizieren.

Modell 3 – Ising-Modell der CM Ähnlichkeitsmatrix Analyse: Dieses Modell ist eine Form eines hybriden Modells und ergänzt Modell 2: Die Ausgangsbasis ist der Realteil der Ähnlichkeitsmatrix aus Modell 2. Die Ähnlichkeitsmatrix wird als Repräsentant eines Netzwerkes verstanden: Die Stärken der Ähnlichkeiten bilden die Kanten des Netzwerkes. Dieses klassische Netzwerk kann auf ein Ising Qubit-Netzwerk mit entsprechenden Kantenstärken abgebildet werden. Die Quantum Computing Berechnung mit der d-wave Annealing Technologie ermittelt die Energielandschaft dieses Netzwerkes. Die niedrigsten Energietäler oder das niedrigste Energietal repräsentiert den energetisch günstigsten Teamzustand und ist damit identisch mit dem CM Zustand. Die Anwendung auf die Gruppendynamik aus Modell 2 ergibt, dass die Untergruppe BDE den Collective Mind repräsentiert. Modell 3 ist ohne Probleme auf große Gruppen skalierbar, was bei der klassischen Berechnung mittels Eigenwert und Eigenvektoren nicht der Fall ist. Außerdem wird der CM-Beitrag anderer Teammitglieder-Kombinationen durch ihre Einordnung auf der Energieskala sofort und einfach sichtbar. Leider konnte bisher der Imaginärteil der Ähnlichkeitsmatrix nicht verwendet werden, da damit in Gebiete vorgestoßen wird, die auch noch in der Quantenmechanik gerade erst erforscht werden. – Die vollständige Abbildung der Ähnlichkeitsmatrix auf das d-wave System ist deshalb z.Zt. (noch) nicht möglich.    

Modell 4 – Quantum Cognition der Team Kommunikation: Dieses Modell ist ein vollständiges  quantenmechanisches Modell und beruht auf exakten Quanten-Berechnungen des CM auf einem klassischen Computer. Die eins-zu-eins Übertragung auf einen Quantencomputer ist nicht möglich. Damit ist das Modell nicht skalierbar, da die Berechnungen mit steigender Anzahl an Personen exponentiell wachsen. Das Modell wurde im Blog ‚AI & QC & M 4.0: Quantum Cognition für das Team-Management oder von der Macht der Mathematik‘ vom Oktober 2024 veröffentlicht. Die Idee ist hierbei die Persönlichkeitsdimensionen des Big Five (oder MBTI) Persönlichkeitsmodells in Qubit-Zustände abzubilden. Eine eindeutige positive Präferenz für eine Persönlichkeits-Dimension wird in eine Qubit  1 umgesetzt, eine eindeutige negative Präferenz in eine Qubit 0 und eine indifferente Präferenz wird als Superposition abgebildet. Ich wende die aus der Quantenmechanik bekannte Technik der Projektionsoperatoren auf das so abgebildete Persönlichkeitsmodell an: Über einen Interaktionsoperator wird zuerst die Interaktion im Team berechnet. Hieraus entsteht eine Team-Quantenwelle für die mittels eines CM Operators die Wahrscheinlichkeit für das Eintreten eines CM berechnet wird. Der CM Zustand wird als Zustand der quantenmechanischen Verschränkung interpretiert: Hierbei kann wahlweise danach unterschieden werden, ob alle Persönlichkeitsdimensionen verschränkt sind oder nur ein Teil der Dimensionen.
Die theoretischen Ergebnisse werden qualitativ durch viele praktische Erfahrungen gestützt: u.a hängt die Wahrscheinlichkeit ein CM auszubilden stark von der Teamzusammensetzung ab, die Reihenfolge der Interaktionen hat einen Einfluss auf die CM Dynamik, und ordnen die Teammitglied ihre Persönlichkeitspräferenzen nicht einem gemeinsamen Ziel unter, wird die Wahrscheinlichkeit der CM Ausbildung stark beschränkt. Nicht-lineare Effekte der Persönlichkeitsinteraktionen werden meines Erachtens erstaunlich gut abgebildet. Dies wirft die sehr weitreichende Frage auf, ob unsere Kognition und unsere Kommunikation zum Teil oder ganz den grundlegenden Prinzipien der Quantenmechanik unterliegen.    

Die nachfolgenden Modelle sind bisher nicht in einem Blog enthalten und werden hier erstmalig vorgestellt:

Modell 5 – Variationsmodell der Quantum Team Kommunikation: Dieses hybride Modell weist wie Modell 4 die Big Five Persönlichkeitspräferenzen Qubits zu. Diese Persönlichkeitspräferenzen dienen jedoch lediglich als Startwerte für eine Variationsrechnung. Ausgehend von den Startwerten werden mittels klassischer Variation Qubit-Superpositionen erzeugt. Ziel ist es, mittels Variation einen vollständigen verschränkten CM Zustand für eine ausgewählte Persönlichkeitsdimension (zum Beispiel die der Offenheit) zu finden. Es zeigt sich, dass ein solcher verschränkter Zustand existiert, wenn andere Persönlichkeitsdimensionen von den Startwerten abweichen. Im Beispiel-Team führt dies u.a. dazu, dass die unbestimmte Persönlichkeitspräferenz Gewissenhaftigkeit des Teammitgliedes Alice sich in eine Persönlichkeitsdimension Gewissenhaftigkeit mit geringer Präferenz wandeln muss. Dies zeigt an, dass sich ein CM oft nur dann ausbilden kann, wenn die Teammitglieder ihre persönlichen Präferenzen dem gemeinsamen Ziel oder der gemeinsamen Vision unterordnen. Mit diesem Modell ist es auch möglich, optimalere Teampräferenzen, mit denen sich ein CM leichter ausbildet, per Variation zu finden.

Modell 6 – Ising Modell der Team-Interaktion: Dieses Quantum Modell läuft auf der d-wave Hardware. Hierzu werden die Big Five Persönlichkeitspräferenzen in Qubit-Zustände umgesetzt, deren Wechselwirkungen über ein Ising-Modell erfasst werden (siehe Abbildung 1) – Jedes Teammitglied wird mittels n Qubits modelliert. Für jede der n Persönlichkeitsdimensionen ein Qubit.

Abbildung 1: Energie des Ising-Models, in dem die Qubits als Spins (magnetische Momente) si modelliert werden und deren Paar-Wechselwirkung durch Jij.

Die Qubit-Paar-Wechselwirkungen Jij stellen eine Matrix dar (siehe auch Modell 3 und dort die Verwendung einer Ähnlichkeitsmatrix). Die Einzelenergie hi und die Paar-Wechselwirkungen Jij werden leider per Intuition festgelegt. – Derzeit kenne ich keinen praktikablen Weg die Qubit Einzelenergie und die Qubit-Paar-Wechselwirkungen aus grundsätzlichen Modellen wie Modell 3 abzuleiten. Es wird zum Beispiel statt dessen angenommen, dass nur gleiche Persönlichkeitsdimensionen wechselwirken und gleiche Präferenzen das CM positiv beeinflussen und ungleiche Präferenzen das CM negativ beeinflussen. Unter Berücksichtigung dieser ‚intuitiven‘ Festlegung des Ising-Modells lassen sich Teammodelle auf ihre Eignung zur Ausbildung eines CM überprüfen.
Dieses Modell ist sehr einfach skalierbar sowohl in der Anzahl an Teammitgliedern als auch in der Aufnahme von zusätzlichen Persönlichkeitscharakteristika wie Werten oder Motiven. 

Modell 7 – Variationsmodell des QC Schaltkreis Ansatzes der Team-Kommunikation: Der sogenannte Quantum Schaltkreis Ansatz bedeutet, dass eine Kombination von Quanten-Schaltkreisen ausgewählt wird, um die Realität zu modellieren. Dieser Ansatz wird derzeit von nahezu allen QC Hardware Anbietern unterstützt.
Die Auswahl der Schaltkreise ist jedoch mehr oder weniger ambivalent. Die Auswahl ist auf keinen Fall stringent, da es nach meinem bisherigen Kenntnisstand keinen direkten Zusammenhang zwischen Schaltkreis-Ansatz und Problemstellung gibt. Der Quantum Schaltkreis Ansatz ist ein hybrides Modell, in dem ein quantenmechanisches Modell von ‚außen‘ klassisch variiert wird, bis der CM in einer bestimmten Variation erreicht ist. Diese ‚klassische‘ Variation wird durch geeignete Anpassung von Parametern in den QC Schaltkreisen erreicht. Die Anpassung erfolgt durch ML Optimierer mit oder ohne neuronale Netzwerke. Der Ansatz wird experimentell oder über eine exakte Berechnung für kleine Problemdimensionen validiert.– Diese Vorgehensweise wird meines Erachtens in (nahezu) allen QC Algorithmen verwendet, die auf Schaltkreisen beruhen und eine wissenschaftliche oder industrielle Anwendbarkeit verfolgen. In unserem Fall habe ich das Setting aus Modell 4 übernommen und den Ansatz mehrmals angepasst, um eine vollständige Verschränkung zu erreichen und dafür zu sorgen, dass der Überlapp der Wellenfunktionen aus Modell 4 und dem hiesigen Modell vollständig ist. Damit stelle ich sicher, dass der Ansatz nicht völlig beliebig ist. Der ausgewählte Schaltkreis muss mindestens ein Schaltkreiselement enthalten, das über Parameter variiert werden kann. Typisch ist die Rotation der Qubits entlang einer der drei Raum Axen. Die Rotationswinkel sind in diesem Fall die Parameter, die von außen mittels klassischer Variation verändert werden.  In unserem Modell werden die Y-Rotationswinkel von N RY-Schaltkreisen (N = Anzahl der Persönlichkeitsdimensionen*Anzahl an Teammitgliedern) variiert bis sich eine vollständige Verschränkung in den ausgewählten Persönlichkeitsdimensionen eingestellt hat.    

Abbildung 2: Beispiel Quanten-Schaltkreis für zwei Qubits, die zwei interagierende Personen oder zwei interagierende Persönlichkeitsdimensionen repräsentieren.

Ich erläutere im Folgenden den einfachen Quantenschaltkreis aus Abbildung 2, da dieser die grundlegende Idee der Quanten-Wellenfunktion in der Quantum Cognition und der Quantum Team Kommunikation gut wiedergibt.

Betrachtet man den gezeigten Quantenschaltkreis aus der Perspektive von Quantum Cognition oder von Quantum Team Kommunikation, so lässt sich der abstrakte mathematische quantenmechanische Formalismus auf eine Situation mit zwei Personen/Akteuren oder Agenten übertragen: In dem Bild steht Qubit 1 für die mentale oder kommunikative ‚Welle‘ von Person A und Qubit 2 für die von Person B. Die einzelnen quantenmechanischen Operationen können dann als kognitive oder kommunikative Prozesse interpretiert werden, bei denen Überzeugungen, Erwartungen oder Informationsinhalte von A und B miteinander in Beziehung gesetzt, transformiert und anschließend gemeinsam ausgewertet (gemessen) werden.

Ausgangszustand Ψ⟩:
Zunächst gehen wir davon aus, dass ∣Ψ⟩ den anfänglichen ‚gemeinsamen kognitiven Zustand‘ von Person A und Person B darstellt. Dieser Zustand kann bereits ein bestimmtes Maß an Unsicherheit, Superposition von Meinungen oder Perspektiven enthalten, in denen sowohl A als auch B noch nicht festgelegte Standpunkte haben. Es könnte sich zum Beispiel um ein gemeinsames Thema handeln, zu dem beide Personen eine innere Haltung entwickeln, aber noch nicht klar ist, welche Resultate oder Meinungen sich herauskristallisieren.

Person A (Qubit 1) – Hadamard-Gatter (H):
Das Hadamard-Gatter auf Person A’s Qubit lässt sich als ein „Perspektivwechsel“ oder als ein Wechsel von einer klaren, eindeutigen Überzeugung zu einem Zustand interpretieren, in dem Person A’s Meinung oder Einstellung gegenüber dem Thema in einer Superposition zweier gegensätzlicher Einstellungen liegt. Vor der Anwendung des Hadamard-Gatters könnte Person A eine relativ klare Meinung gehabt haben (z. B. Zustimmung = 1 oder Ablehnung = 0). Durch die Hadamard-Operation wird Person A’s innere Haltung in eine Überlagerung gebracht, in der A gleichzeitig eine gewisse Neigung zur Zustimmung und zur Ablehnung aufweist, aber eben noch nicht determiniert ist. In der Sprache der Teamkommunikation könnte dies bedeuten, dass Person A versucht, die Thematik aus einem anderen Blickwinkel zu betrachten, offen für neue Interpretationen ist oder sich von einem eindimensionalen zu einem breiteren Wahrnehmungsrahmen bewegt.

CNOT-Gatter zwischen Person A (Control) und Person B (Target):
Das CNOT-Gatter kann man als einen Prozess des kommunikativen Einflusses oder der kognitiven Kopplung interpretieren. Person A’s Zustand (nach dem Perspektivwechsel durch das H-Gatter) fungiert als eine Art ‚Steuerung‘ für Person B’s Einstellung. Ist Person A’s Haltung nach dem Hadamard und im Kontext des gemeinsamen Themas in eine Richtung, repräsentiert durch den Zustand 1, geneigt, so ändert sich daraufhin Person B’s innerer Zustand (z. B. von Zustimmung zu Ablehnung oder umgekehrt). Ist A in Richtung 0, bleibt B’s Haltung unverändert. Dieses Modell versucht, die Idee einzufangen, dass die neu gewonnene Offenheit oder Unsicherheit von Person A direkten Einfluss auf B’s innere Einstellung haben kann—etwa indem Person A gewisse Zweifel oder Ideen äußert, die Person B dazu bringen, ihren eigenen mentalen Zustand zu revidieren.

In der Teamkommunikation könnte man sagen: Durch den Denk- oder Argumentationsschritt, den Person A vollzieht (repräsentiert durch das Hadamard-Gatter), eröffnet sich ein neuer Möglichkeitsraum von Überzeugungen. Das CNOT symbolisiert dabei, dass Person B auf diese neue, komplexe Haltung von A reagiert und dadurch selbst ihren Standpunkt anpasst oder in Frage stellt. Auf diese Weise entstehen potenzielle Korrelationen zwischen den beiden mentalen Zuständen.

Messung:
Schließlich werden beide Qubits gemessen. Dies entspricht dem Moment im Teamprozess, an dem A und B ihre Meinungen äußern oder festnageln—sei es durch eine abschließende Entscheidung, ein Votum oder eine konkrete Stellungnahme. Die Messung transformiert den vorher unbestimmten, superponierten Zustand in ein klares Resultat: Beide Personen legen sich letztlich auf eine konkrete Haltung fest (0 oder 1).

Von der Warte der Quantum Cognition lässt sich die Messung als Übergang von potenziellen kognitiven Zuständen (Superpositionen von Optionen, Unsicherheiten, Überlagerungen von Bedeutungen) zu einem klaren, beobachtbaren Ergebnis deuten. Wenn A und B schließlich kommunizieren, Einigungen erzielen oder Positionen darstellen, ‚kollabiert‘ der gemeinsame kognitive Zustand in ein bestimmtes, messbares Resultat.

Fazit im Kontext von Quantum Cognition / Quantum Team Kommunikation:

  • Die Vorbereitungsbox ∣Ψ⟩ steht für den initialen kognitiven Gesamtzustand des Teams (A und B), der vielleicht eine gemischte oder unklare Haltung zu einem Thema enthält.
  • Das Hadamard-Gatter auf Person A entspricht einem Perspektivwechsel oder einer Öffnung für neue Sichtweisen.
  • Das anschließende CNOT-Gatter zeigt, wie Person A’s nun veränderte Sichtweise Person B’s mentalen Zustand beeinflusst und potenziell verschränkt oder zumindest miteinander kognitiv koppelt.
  • Die abschließende Messung repräsentiert den Moment der Festlegung, in dem aus den zuvor unbestimmten, interaktiven kognitiven Zuständen klare, beobachtbare Meinungen oder Handlungsentscheidungen abgeleitet werden.

So hilft uns Abbildung 2, den Prozess als eine Art gemeinschaftliches, quanten-ähnliches ‚Denken‘ zu verstehen, in dem Zustände nicht binär und fix sind, sondern sich durch Interaktion, Perspektivwechsel und finale Äußerungen in ein bestimmtes Ergebnis transformieren.

Zusammenfassend stelle ich fest:

Modell 1 – Agent Based Modelling erlaubt mit einfachen Mitteln das Studium von (nahezu) allen grundlegenden Team Eigenschaften. Bei Ausbau in Richtung AI und QC gibt es kaum Einschränkungen der Aussagekraft.

Modell 2 und 3 – Ähnlichkeitsmatrix hat mit Abstand die praktischste Aussagekraft hat und kann unmittelbar die Team Kommunikation in einem Hybriden Kollektiven Intelligenz Ansatz aus Mensch und Maschine aktiv unterstützen  

Modell 4 und 5 – Quantum Team Kommunikation stellen die Modelle dar, in die derzeit am wenigsten Annahmen einfließen. Es fließen nur zwei Annahme ein: Der CM Zustand wird als verschränkter Zustand verstanden und die Team-Interaktion unterliegt (auch) der Quantum Probability Theory. Diese Modelle eröffnen damit den Zugang zu einem völlig neuen Verständnis von menschlicher Kommunikation.

Modell 6 – Ising Modell ist als quantenmechanisches Modell sehr einfach, enthält jedoch (derzeit noch) die meisten Annahmen und dient damit eher zur Sondierung der Ergebnisse aus den anderen Modellen.

Modell 7 – Quanten Schaltkreise ist als quantenmechanisches Modell recht einfach. Vermittelt einerseits Metapher-ähnliche Einblicke in die quantenmechanische Interpretation der Team Kommunikation andererseits fehlt (mir derzeit) der intuitive Zugang, den die Modell 4 und 5 haben.

Die nachfolgende Tabelle 1 fasst die zentralen Modell-Charakteristika zusammen:

Modell  KategorieEinschränkungAussagekraft
1 – Agent Based Modelling der Team-InteraktionenKlassisch (hybrid, bei Ausbau mittels Quantum Cognition)Derzeit meistens noch einfache klassische AgentenGrundlegende Aussagen zur CM-Dynamik in unterschiedlichen Teams
2 – Eigenvektoren der CM Ähnlichkeitsmatrix AnalyseKlassischGeringe SkalierungFür kleine Teams: CM Stärke und Beitrag jedes Teammitglieds zum CM
3 – Ising-Modell der CM Ähnlichkeitsmatrix AnalyseHybrid (Klassisch mit Quantum Variation)CM Stärke und Beitrag des Teammitglieds zum CM, einfache Interpretation des CM Potentials von Teams mittels einer Energielandschaft
4 – Quantum Cognition der Team KommunikationQuantum (Berechnung auf klassischem Rechner)Keine SkalierungFür kleine Teams: Erstaunliche qualitative Übereinstimmung bzgl. Teamdynamik zwischen Theorie und Erfahrung
5 – Variationsmodell der Quantum Team Kommunikation (basierend auf Modell 4)Hybrid mit klassischer Variation (Berechnung auf klassischem Rechner)Keine SkalierungFür kleine Teams: Aussage zu ‚optimalen‘ Teams und Einblick in die Anpassungs-notwendigkeiten der Team-Persönlichkeiten  
6 – Ising Modell der Team-InteraktionQuantumMappen auf Ising-Modell mit intuitiven Annahmen aus den Modellen 4 und 5Aussagen zu optimalen Teams, ähnlich wie Modell 5, jedoch unter Berücksichtigung der Einschränkungen
7 – Variationsmodell des QC Schaltkreis Ansatzes der Team-KommunikationHybrid mit klassischer VariationMappen auf QC-Schaltkreise‚Metaphorische‘ Erklärung einer Quantum Cognition bzw. Quantum Team Communication auf der Basis von einzelnen Schaltkreisen, Auffinden optimaler Teams
Tabelle 1: Übersicht der Modell-Charakteristika der sieben Modelle

AI & M 4.0: Hybride Collective Intelligence (CI) – Verarbeitungspipeline: Vom Business Plan über die Ziel-Hierarchie zum Projekt Plan – Ergänzungen

In diesem Blog-Beitrag ergänze ich den vorherigen Blog-Beitrag zur hybriden Collective Intelligence: Vom Business Plan über die Ziel-Hierarchie zum Projekt Plan.

Ich behandle drei Ergänzungen:

Textueller Projektstrukturplan: Ein Projekt Management Kollege hat sich ebenfalls unlängst in dem IPMA Blog [1] mit der Frage beschäftigt, ob eine KI einen Projektmanager bei der Erstellung eines Projektplans unterstützen kann. Seine Prompts hat er im Blog gelistet, jedoch nicht die von chatGPT erzeugten Ergebnisse. Ich kann auch nicht entnehmen, ob er chatGPT oder chatGPTplus verwendet hat. Die Ergebnisse sind nach seinen Aussagen durchweg positiv: Es wurde ein Gantt-Diagramm erzeugt. Da meine Ergebnisse im letzten Blog-Beitrag jedoch keineswegs so positiv waren, möchte ich dies nochmals überprüfen.

Big Picture mittels Bildgeneratoren: Die Ziel-Hierarchie als Ausgangspunkt für den Projektstrukturplan und damit für einen Projektplan stellt in der Selbstorganisation gemäß Management 4.0 den zentralen Ordnungsparameter dar. Dieser Ordnungsparameter wird auf der obersten Ebene, der Vision, im Idealfall durch ein Big Picture geankert. Also möchte ich die textuelle Vision, durch Bildgeneratoren wie DALL.E 2 [2] und Stable Diffusion [3], in eine Bilddarstellung umsetzen. – Midjourney wollte ich ebenfalls verwenden. – Jedoch habe ich darauf verzichtet, da Midjourney inzwischen kostenpflichtig ist. – Die neue Version DALL.E 3 ist zum Zeitpunkt der Blog-Erstellung noch nicht verfügbar.

Google Bard: Google hat gerade den chatBot Bard veröffentlich. Ich möchte die im letzten Blog-Beitrag aufgezeigte Collective Intelligence -Verarbeitungspipeline mit Bard überprüfen.

    

Textueller Projektstrukturplan:
Das erste Ergebnis hat mich überrascht: Weist man chatGPTplus an, auf der Basis der Ziel-Hierarchie des letzten Blog-Beitrages einen textuellen Projektstrukturplan zu erstellen, liefert chatGPTplus sogar mit den dort verwendeten Ressourcen und den Vorgangsabhängigkeiten (Vorgängern) einen sauberen Projektstrukturplan als Tabelle im Standard-Output-Format von chatGPTplus. Ein Gantt-Diagramm wird in einem Fenster, wie es für die Python-Code-Generierung verwendet wird, ausgegeben. In meinem Fall ist das Gantt-Diagramm horizontal und vertikal abgeschnitten, da offensichtlich zu viele Einträge vorliegen. Die Darstellung erinnert an die ehemalige Darstellung von Tabellen im MS-DOS Format. Da die Einträge zu lang sind, ist Alles durcheinander gewirbelt. – Also kein wirklich gutes Ergebnis. Da chatGPTplus in textueller Form einen perfekten Projektstrukturplan erzeugt hat, bitte ich das System um einen entsprechenden Python-Code für die Erzeugung einer CSV-Datei zum Import in MS Project. Leider war das System auch auf dieser Basis nicht in der Lage das textuelle Wissen in Code Wissen umzusetzen. – Es tauchten wieder die schon im vorherigen Blog geschilderten Unzulänglichkeiten auf. – Zwischen den beiden word embeddings (Text und Code) scheint es offensichtlich keine Brücke in chatGPTplus zu geben. Leider ist der textuelle Projektstrukturplan auch nicht in eine CSV-Datei kopierbar, so dass meines Erachtens der so gewonnene Nutzen überschaubar bleibt.

Big Picture mittels Bildgeneratoren:
Wie schon in den vorherigen Blog-Beiträgen angesprochen, halte ich von dem sogenannten Prompt-Engineering nichts: Es ist das menschliche Abtasten des word embeddings in dem AI System: In den meisten Fällen genügt es jedoch als Experte die Prompts zu formulieren und das AI-System reagiert entsprechend gut. Falls nicht, ist es nicht die Aufgabe des Menschen, sich auf das word embedding des AI-Systems einzustellen, sondern umgekehrt. – Openai trägt dieser Anforderung mit DALL.E 3 Rechnung.

In den Bildgeneratoren DALL.E 2 und Stable Diffusion führt die Prompt-Eingabe der Küchenmanufaktur Vision zu nicht vorzeigbaren Ergebnissen. Meistens war noch nicht einmal irgendetwas von einer Küche zu sehen. Ich greife etwas voraus, denn ich habe google Bard gebeten, ein Bild zu erzeugen. Und tatsächlich erzeugt Bard eine textuelle Bild-Beschreibung, die die Vision des Unternehmens Küchenmanufaktur wiedergibt. Die Bild-Beschreibung ist umfangreich und erstaunlich kreativ. Einen Teil dieser Bild-Beschreibung habe ich den Bildgeneratoren als Prompt eingegeben – nur einen Teil, da die Anzahl der Zeichen für die Prompt-Eingabe begrenzt ist. Hier die Prompt-Eingabe in Englisch (das Bard Original ist in Deutsch):

Create an image for the following description:

In a modern kitchen studio, a family is sitting at the dining table enjoying a meal together. The kitchen is packed with smart kitchen appliances from KüchenManufaktur.
The refrigerator automatically detects what food is missing and orders it from an online retailer. The stove can be controlled by voice, so mom can concentrate fully on cooking. The dishwasher cleans itself after the meal.
The family is happy and satisfied with their smart kitchen appliances. They are grateful for the time saved, the convenience and the additional functions.
The mother sits at the stove and cooks a delicious dish. She smiles and is relaxed. The father is sitting at the dining table talking to the kids. The children are laughing and playing.
The refrigerator opens automatically and puts the needed ingredients on the stove. The stove starts to cook. The dishwasher cleans itself independently after the meal.

Die Ergebnisse der beiden Bildgeneratoren ist ernüchternd und gleichzeitig zum herzhaften Lachen: Abbildung 1 zeigt zwei ausgewählte Bilder, andere Bilder hatten oft Garnichts mit dem Thema zu tun oder glichen vorwiegend eher langweiligen Bildern aus Möbelhäusern der Jahre 1950-2000.

Man beachte im ersten Bild die Gemüseschüssel auf dem Boden – ohne Tisch, ohne Personen – generiert von Stable Diffusion und im zweiten Bild die verzerrten Gesichter und das Loch oben im Kühlschrank generiert von DALL.E 2.

Wenn Teams in Management 4.0 Trainings aufgefordert werden, das Ergebnis ihres KüchenManfuktur-Projektes zu skizzieren, zeichnen sie auch manchmal einen Kühlschrank, der an einer äußeren Hausmauer steht. Und, die Hausmauer und der Kühlschrank haben eine kleine Öffnung, durch die ein Lebensmittellieferdienst den Kühlschrank von außen befüllen kann, entsprechend der Anforderung, der Kühlschrank füllt sich von alleine :-).

Abbildung 1: Linkes Bild generiert von Stable Diffusion [2], rechtes Bild generiert von DALL.E 2 [3]

Nach meinen bisherigen guten Erfahrungen mit Bildgeneratoren ein enttäuschendes Ergebnis.

Google Bard:
Google hat gerade sein neuestes Generatives Neuronales Netzwerk, genannt Bard, veröffentlicht [4]. Ich möchte herausfinden, ob Bard in der Lage ist, einen Projektstrukturplan als CSV-Input für MS Project zu erzeugen: Ich durchlaufe die Verarbeitungspipeline, ähnlich wie für chatGPTplus, und lasse ein Business Model Canvas und eine Ziel-Hierarchie erzeugen. Das Business Model Canvas und die Ziel-Hierarchie sind meines Erachtens nicht ganz so geeignet, wie diejenigen von chatGPTplus. Bard liefert dafür, wie weiter oben schon verwendet, eine sehr gute Bild-Beschreibung der KüchenManufaktur Vision.

Ich bitte um die Erstellung eines textuellen Projektstrukturplans auf der Basis des unten angegebenen Prompts [5]. Abbildung 2 zeigt einen Auszug des erstaunlich guten Ergebnisses: Bard hat das Konzept der Sammelvorgänge recht gut verstanden, wenngleich noch Probleme bei der Dauer-Aggregation vorliegen und die geforderte Vorgänger-Logik nicht vorhanden ist.

Abbildung 2: Screen-Shot der Bard Web-Oberfläche mit einem Auszug des textuellen Projektstrukturplans.

Bard bietet an, diesen textuellen Projektstrukturplan als google sheet zu exportieren. Leider funktioniert dies nicht, das Sheet ist leer.

Bei der Erzeugung eines Python-Programmes für einen CSV-Import des Projektstrukturplans in MS-Project scheitert Bard schon bei der korrekten Erstellung der CSV-Datei. – Rückgemeldete Fehler werden als behoben gemeldet, jedoch sind sie nicht behoben. – Hier ist chatGPTplus deutlich besser!

Zusammenfassend stelle ich fest, dass sowohl chatGPTplus als auch Bard noch erhebliche ‚Kinderkrankheiten‘ haben und derzeit ein Einsatz im Projekt Management noch mit recht vielen Hürden und Unzulänglichkeiten verbunden ist.

[1] Ram J (2023) Role Prompting and Creation of a Project Management Plan – How ChatGPT could help in the creation of information that can be used for writing a project management plan?, https://ipma.world/role-prompting-and-creation-of-a-project-management-plan/, veröffentlicht am 21.08.2023, zugegriffen am 21.09.2023

[2] Stable Diffusion (2023) https://stablediffusionweb.com/#demo, zugegriffen am 21.09.2023

[3] DALL.E 2 (2023) https://openai.com/dall-e-2, zugegriffen am 21.09.2023

[4] Bard (2023) bard.google.com, zugegriffen am 21.09.2023

[5] Prompt für google Bard zur Erzeugung eines Projektstrukturplans:
Weiter oben hast Du einen Vorschlag für eine Ziel-Hierarchie gemacht, wir nehmen diese Ziel-Hierarchie und wollen hieraus einen Projektstrukturplan erstellen. Der Projektstrukturplan soll die Spalten Vorgang, Dauer, Ressource und Vorgänger enthalten. Vorgänge sind die Sub-Ziele. Die übergeordneten Ziele in der Ziel-Hierarchie sind spezielle Vorgänge, sogenannte Sammelvorgänge. Bitte mache selbst für die Dauer der Vorgänge geeignete Vorschläge zu jedem Sub-Ziel. Als Ressourcen nehmen wir fünf Team-Mitglieder, die wir Peter, Claudia, Sonja, Thomas und Mechthild nennen. Bitte verteile die Ressourcen auf die Vorgänge. Falls eine Ressource mehreren Vorgängen zugeordnet wird, so berücksichtige, dass eine Ressource zu einem Zeitraum nur einen Vorgang bearbeiten soll. In der Spalte Vorgänger soll angegeben werden welcher Vorgang welchem anderen Vorgang vorausgeht, um sicherzustellen, dass eine Ressource nur einen Vorgang zu einem Zeitraum bearbeitet. Behalte die Nummerierung der Ziel-Hierarchie für den Projektstrukturplan bei und verwende in der Spalte Vorgänger diese Nummern, um den Vorgänger zu kennzeichnen.

AI & M 4.0: Hybride Collective Intelligence (CI)-Verarbeitungspipeline: Vom Business Plan über die Ziel-Hierarchie zum Projekt Plan

Die Ziel-Hierarchie ist im Management 4.0 der zentrale Ordnungsparameter der Selbstorganisation: Sie dient sowohl der Ausrichtung des Projektteams als auch der Kommunikation mit den Stakeholdern und deren Ausrichtung an der Projektarbeit.

Unter einer hybriden Collective Intelligence Verarbeitungspipeline (CI-Verarbeitungspipeline) verstehe ich eine Abfolge von Verarbeitungsschritten, die im Idealfall vollautomatisch abläuft und durch die hybride Collective Intelligence von Mensch und Künstlicher Intelligenz erstellt wurde.

Die CI-Verarbeitungspipeline ‚Vom Business Plan über die Ziel-Hierarchie zum Projekt Plan‘ ist ein Beispiel für die Ausgestaltung von Projektarbeit mittels hybrider Collective Intelligence. In dem gerade in Veröffentlichung befindlichen Buchbeitrag ‚Collective Intelligence von KI und Mensch in der Projektarbeit – Ein Rahmenwerk auf der Basis von ICB 4.0 und Management 4.0‘ skizzieren meine Kolleg(inn)en von der GPM Fachgruppe Agile Management und ich die hybride Collective Intelligence für alle Perspektiven der IPMA Individual Competence Baseline 4.0.  

Ich überprüfe in diesem Beitrag, ob es möglich ist, mit Hilfe von chatGPTplus eine Ziel-Hierarchie zu erstellen, die in einen Projekt Plan transformiert werden kann. – Im Idealfall soll die Ziel-Hierarchie aus einem Business Plan abgeleitet werden. – Eine Aufgabe, die ohne AI-Unterstützung recht viel menschliche Kreativität und Handarbeit erfordert.

Ich benutze zur Überprüfung der Machbarkeit wieder das schon in den vorherigen Blog-Beiträgen verwendete Beispiel der Küchenmanufaktur. Die folgende CI-Verarbeitungspipeline beruht auf mehreren vorausgegangenen Tests, in denen ich einzelne Abschnitte der CI-Verarbeitungspipeline ausprobiert habe.  Die bereinigte CI-Vereinigungspipeline startet mit dem folgenden chatGPTplus Prompt:

Ein Unternehmen, das wir KüchenManufaktur nennen, stellt sogenannte Weiße Ware, also u.a. Herde, Kühlschränke und Gefrierschränke her. Bisher hat das Unternehmen KüchenManufaktur diese Weiße Ware ohne große Digitalisierungsfunktionen hergestellt. Jetzt soll die Weiße Ware smart werden und als Life Style Produkt positioniert werden. Der Einsatz von smarter Technologie kann auch den Einsatz von AI oder ML beinhalten. Zum Beispiel könnte eine zukünftige Anforderung für einen Kühlschrank beinhalten, dass ‚er sich von alleine füllt‘. ‚Von alleine füllen‘ bedeutet, dass er über ein intelligentes Füllmanagement verfügt, das u.a. Zugriff auf Lebensmittellieferanten hat.

Es geht also um die Digitale Transformation des Unternehmens KüchenManufaktur. Die Digitale Transformation soll mittels eines Projektes durchgeführt werden. In einem ersten Schritt ist ein Business Plan für die Digitale Transformation zu erstellen.  Kannst Du mir bei der Erstellung eines Business Plans helfen? Welches Werkzeug schlägst Du für die Erstellung des Business Plans vor?

Nach Eingabe dieses Prompts liefert chatGPTplus eine Lehrbuch-Aussage, zu den Kapiteln eines Business Plans. Ich gehe hier nicht weiter auf dieses Ergebnis ein, da sich hieraus keine inhaltlichen Aussagen für die CI-Verarbeitungspipeline ableiten lassen.

Also stupse ich chatGPTplus in die von mir gewünschte Richtung und gebe in einem Prompt Business Model Canvas als Tool vor. – Damit greife ich auf die des Öfteren gemacht Erfahrung zurück, dass die Collective Intelligence aus AI und meiner Person sich nur zeigt, wenn ich als Mensch über hinreichendes Fachwissen verfüge, so dass ich in der Lage bin, der AI eine Such-Richtung mitzugeben.

Auf dieser Basis kann sich das Ergebnis meines Erachtens sehen lassen (chatGPTPlus Aussage):

Natürlich, ich kann Ihnen helfen, ein Business Model Canvas für die digitale Transformation des Unternehmens KüchenManufaktur zu erstellen. Hier sind meine Vorschläge für jedes Segment des Business Model Canvas:

  1. Kundensegmente: Haushalte und Unternehmen, die an modernen, intelligenten Küchengeräten interessiert sind. Dazu gehören umweltbewusste Kunden, Technikaffine und diejenigen, die nach Komfort und Effizienz streben.
  2. Wertangebote: Smarte Küchengeräte, die KI und ML-Technologien nutzen, um das Benutzererlebnis zu verbessern. Funktionen könnten eine automatische Nachbestellung von Lebensmitteln, Energieeffizienz, personalisierte Kochempfehlungen basierend auf den im Kühlschrank vorhandenen Lebensmitteln und Fernsteuerung der Geräte über eine App enthalten.
  3. Kanäle: Direkte Verkaufskanäle wie die firmeneigene Website und der firmeneigene Laden, sowie Drittanbieter-Einzelhändler, Online-Marktplätze und Partnerunternehmen in der Lebensmittel- und Technologieindustrie.
  4. Kundenbeziehungen: Aufbau langfristiger Beziehungen durch erstklassigen Kundenservice, regelmäßige Updates und Verbesserungen der intelligenten Funktionen, Nutzer-Communitys und personalisierte Kommunikation.
  5. Einnahmequellen: Verkauf der smarten Geräte, möglicherweise auch Abonnementdienste für erweiterte Funktionen oder Services. Kooperationen mit Lebensmittellieferanten könnten auch zu Einnahmen führen, z.B. durch die Integration von Lebensmittellieferdiensten in die intelligenten Geräte.
  6. Schlüsselressourcen: Das Forschungs- und Entwicklungsteam, das die smarten Geräte und die dazugehörige Software entwickelt. Die Marke und der Ruf von KüchenManufaktur. Beziehungen zu Lieferanten und Vertriebspartnern.
  7. Schlüsselaktivitäten: Forschung und Entwicklung von smarten Geräten und dazugehöriger Software. Aufbau und Pflege von Beziehungen zu Lieferanten und Vertriebspartnern. Marketing und Verkauf der smarten Geräte.
  8. Schlüsselpartner: Lebensmittellieferanten, Technologiepartner für die Bereitstellung von KI/ML-Funktionen, Einzelhändler und Online-Marktplätze.
  9. Kostenstruktur: Kosten für Forschung und Entwicklung, Produktion der smarten Geräte, Vertrieb, Kundenservice und allgemeine Betriebskosten.

Ich frage nach einer weiteren Ausgestaltung und einer dazugehörigen Strategie. Aufgrund des Umfanges der chatGPTplus Antwort, gebe ich hier nur einen Auszug der Ausgestaltung und der vorgeschlagenen Strategie wieder:

Kundensegmente:

  • Sie könnten untersuchen, welche Altersgruppen am wahrscheinlichsten an Ihren Produkten interessiert sein könnten. Junge Erwachsene könnten eher an technisch ausgereiften Geräten interessiert sein, während ältere Menschen Wert auf Bequemlichkeit legen könnten.
  • In welchen geografischen Märkten sind smarte Küchengeräte besonders gefragt? Dies könnte Ihnen helfen, Ihre Vertriebs- und Marketingstrategie anzupassen.

Die von chatGPTplus abgeleitete Strategie sieht dann so aus (chatGPTplus Ausgabe):

Auf der Grundlage des Kontexts, den Sie zur Verfügung gestellt haben, könnte die folgende Strategie für die digitale Transformation der KüchenManufaktur in Betracht gezogen werden:

  1. Produktentwicklung und Positionierung: Entwickeln Sie Ihre Produktpalette weiter, um smarte Funktionen einzuschließen. Fokussieren Sie sich auf KI/ML-Fähigkeiten, um einzigartige und personalisierte Benutzererfahrungen zu ermöglichen. Positionieren Sie Ihre Produkte als High-End-Lifestyle-Produkte.
  2. Marktausrichtung: Zielmarkt könnten technologieaffine junge Erwachsene und Berufstätige sein, die einen aktiven und modernen Lebensstil pflegen. Betrachten Sie sowohl städtische als auch suburban gelegene Märkte, die eine hohe Konzentration dieser Zielgruppe aufweisen.
  3. Vertriebskanäle: Nutzen Sie sowohl Online- als auch Offline-Kanäle. Online können Sie eine E-Commerce-Plattform entwickeln und auf Plattformen wie Amazon und eBay präsent sein. Offline können Sie Showrooms eröffnen, wo die Kunden die Produkte erleben können. In Betracht kommen auch Partnerschaften mit Bauunternehmen oder Immobilienentwicklern.
  4. Kundenbindung: Entwickeln Sie ein umfassendes Kundenerlebnis. Bieten Sie Installations- und Wartungsdienste an und entwickeln Sie eine digitale Plattform/App, auf der Benutzer Rezepte austauschen, Kochkurse ansehen und sogar Lebensmittel bestellen können, die direkt mit Ihrem smarten Kühlschrank synchronisiert werden.
  5. Partnerschaften: Schließen Sie Partnerschaften mit Lebensmittellieferanten, um ein integriertes Ökosystem zu schaffen. Denken Sie auch an Kooperationen mit Ernährungsberatern und Kochschulen.
  6. Operative Effizienz: Automatisieren Sie, wo es sinnvoll ist, Ihre Produktionsprozesse und nutzen Sie die durch Ihre smarten Geräte generierten Daten, um Ihre Prozesse und Angebote zu optimieren.
  7. Einnahmequellen: Generieren Sie Einnahmen durch den Verkauf von Produkten und zusätzlichen Dienstleistungen, Werbung auf Ihrer Plattform und möglicherweise durch den Wiederverkauf von renovierten Gebrauchtgeräten.

Nachdem ich chatGPTplus darum bitte, die Vision nicht in die Ziel-Hierarchie beginnend mit Nummer 1. einzubauen, erhalte ich die unten gelistete Ziel-Hierarchie. – Der nicht erwünschte Einbau der Vision als Nummer 1. in die Ziel-Hierarchie führt im Projektplan zu einer ungünstigen Struktur. Um dies zu erkennen und zu beheben, musste ich mehrere Kommunikationsrunden mit chatGPTplus durchlaufen. Außerdem habe ich für den späteren Projekt Plan Projektmitarbeiter eingeführt, die chatGPTplus nach eigener Einschätzung auf die Sub-Ziele verteilen soll. – Hier ist auch ein Hinweis notwendig, dass übergeordneten Zielen keine Ressourcen zugeordnet werden, da die Zuordnung lediglich auf Sub-Ziel-Ebene erfolgt. – Man kann an diesen notwendigen Hinweisen erkennen, dass chatGPTplus derzeit über kein wirkliches PM-Know how verfügt. Das Ergebnis ist mit diesen (kleinen) Einschränkung wieder beeindruckend (zuerst mein Prompt):

Bitte baue die einzelnen Elemente der Business Model Canvas und die dazugehörige Strategie noch etwas besser ein und liste in Klammern vielleicht hinter jedem Ziel bzw. Sub-Ziel mögliche oben schon genannte Ressourcen. Bitte nimm ‚Digitale Transformation der KüchenManufaktur‘ aus der Nummerierung raus, es ist ja der Name des Projektes und ergänze den Namen des Projektes um eine Vision, die das Projekt als Vision gut beschreibt, so dass das zukünftige Projektteam an diesem Namen und der Vision mental ausgerichtet wird.

Abbildung 1: Ein Ziel-Hierarchie Ergebnis von chatGPTplus bei vorgeschaltetem Business Model Canvas (Um zu vergrößeren: Bild mit rechter Maustaste in neuem Browser-Fenster öffnen.)

Anschließend bitte ich chatGPTplus, um die Erzeugung eines Python-Codes, der die Ziel-Hierarchie als gerichteten Graphen visualisiert. Das Ergebnis ist wieder erstaunlich gut, zumal ich weiß, dass vor einigen Wochen die Python-Code-Generierung hierzu noch keine gut lesbaren Ergebnisse lieferte. Der Python Code verwendet die folgenden Bibliotheken: NetworkX-Graph, Matplotlib und Pandas.

Abbildung 2: Visualisierung einer Ziel-Hierarchie ohne vorgeschaltetes Business Model Canvas (Um zu vergrößeren: Bild mit rechter Maustaste in neuem Browser-Fenster öffnen.)

chatGPTplus hat die Namen der fünf Teammitglieder Peter (P), Claudia (C), … selbständig als Knoten in den Hierarchie-Baum eingebaut, so dass man auch hier schon erkennen kann, welche Teammitglieder in welchem Sub-Ziel tätig sind. – Ein Wehrmutstropfen besteht noch: Leider ist es uns (AI und mir) nicht gelungen fehlerfreien Code zu erzeugen, der die vollständigen Namen enthält – jeder Namens-Buchstabe wird als Knoten interpretiert, aus diesem Grunde habe ich nur den Anfangsbuchstaben händisch in den Code eingesetzt. Man kann auch feststellen, dass die Darstellung der Nummerierung der Ziel-Hierarchie nicht stabil ist: Die Art der Nummerierung in der Abbildung 2 und 1 ist unterschiedlich.

Ein Wiederholen der Code-Generierung liefert also nicht immer das gleiche Ergebnisse: Es wurde auch eine Visualisierungen erzeugt, in der die Namen der Teammitglieder in die Ziel-Hierarchie-Knoten mitaufgenommen wurden. Weiter unten begegnet uns dieses schon aus anderen Blog-Beiträgen bekannte chatGPTplus „Vergessen“ wieder.

Die Ergebnisse bis hierhin sind trotzdem beeindruckend. Diese Einschätzung erfolgt auch auf der Erfahrung, dass Teams in meinen Management 4.0 Trainings sich mit Ziel-Hierarchien sehr schwer tun und die Collective Intelligence der Teams keine vergleichbar guten Ergebnisse lieferte.

Auf der Basis der Ziel-Hierarchie habe ich chatGPTplus gebeten eine CSV-Datei für MS-Project zu erstellen.

Hier waren wir leider nicht erfolgreich. – Selbst nach vielen versuchten Verbesserungsdurchläufen konnte chatGPTplus keinen befriedigenden Code erzeugen, der gleichzeitig alle Anforderungen für einen groben Projektplan in einer CSV-Datei ablegt: Also z.B. eine CSV-Datei mit den Spalten ‚Vorgang‘, ‚Ressource‘, ‚Vorgänger‘ und ‚Dauer‘ erzeugt.

chatGPTplus verfügt offensichtlich über keinerlei Projektplan-Muster, auf die das System zurückgreifen kann. Was allerdings schwerer wiegt, ist das schon bekannte Fehlverhalten des „Vergessens“. Wurde zum Beispiel eine Anforderung korrekt in den Code umgesetzt, führte eine weitere Anforderung oder eine Fehlerbehebung zum „Vergessen“ der bisherigen korrekten Ergebnisse. – Dies ist umso erstaunlicher als chatGPTplus die Anforderung korrekt verbal wiederholt, jedoch im Code nicht korrekt oder überhaupt nicht umsetzt. Der Code konvergierte einfach nicht zum richtigen Ergebnis.

Dies bestätigt die schon in anderen Blog-Beiträgen gemachte Erfahrung, dass chatGPTplus oft nicht in der Lage ist, mehrere Anforderungen gleichzeitig umzusetzen. Bei der Erstellung des Collective Mind Agent Based Model’s habe ich die Strategie verwendet, die Anforderungen einzeln in Code zu transformieren um anschließend durch mich die Integration vorzunehmen. Hierauf habe ich hier verzichtet. – Diese Strategie entspricht nicht der Idee der CI-Verarbeitungspipeline.   

Der MS-Project Import der nicht vollständigen CSV-Datei, also nur mit den Vorgängen, funktioniert im Prinzip, zeigt jedoch auch Fehler: U.a. werden die deutschen Umlaute nicht richtig dargestellt und was schwerer wiegt, es tauchen Zeichen in den Zellen der Spalten auf, die selbst im notepad++ nicht angezeigt werden. – Auch der Microsoft Support war hier keine Hilfe.

Die Collective Intelligence (CI)-Verarbeitungspipeline mit chatGPTplus ‚Vom Business Plan über die Ziel-Hierarchie zum Projekt Plan‘ zeigt bis zum Schritt Projekt Plan Erstellung beeindruckende Ergebnisse: Die Ergebnisse sind sehr Kontext abhängig. Mit Business Model Canvas oder ohne Business Model Canvas liefert unterschiedliche Ergebnisse. Aber auch der Zeitpunkt der Erstellung spielt eine große Rolle. Der Übergang von der Ziel-Hierarchie zum Projektplan funktioniert zur Zeit (noch) nicht: chatGPTplus ist, wie schon im Rahmen der anderen Blog-Beiträge festgestellt, nicht in der Lage gleichzeitig mehrere Anforderungen, für die wahrscheinlich keine erlernten Muster existieren, ohne „Vergessen“ erfolgreich umzusetzen.

AI & M 4.0: (Collective Intelligence)**2 – Ergänzungen erstellt mit dem Code Interpreter von GPT-4/chatGPTplus!

Dieser Blog-Beitrag ergänzt den vorherigen Beitrag zum Collective Mind Agent Based Model (CM ABM). Ich benutze den vor ein paar Tagen in der beta Version veröffentlichten Code Interpreter von chatGPTplus. Der Code Interpreter ist ein Plugin von chatGPTplus. Er lässt sich in den chatGPTplus Einstellungen vom Anwender aktivieren.

Ich möchte zwei Fragen beantworten:

Kann der Code Interpreter den von mir, mit Hilfe von chatGPTplus, erstellten CM ABM Python Code ausführen?

Welche statistischen oder ML-Auswertungen kann ich mittels des Code Interpreters vornehmen?

Zur ersten Frage:

Leider kann man den Code nicht ausführen lassen. chatGPTplus liefert auch gleich die Antwort, warum dies nicht möglich ist: Diverse verwendete ML-Bibliotheken und MESA Python in dem CM ABM Code sind (noch) nicht in dem Code Interpreter integriert.

Zur zweiten Frage:

Mittels chatGPTplus habe ich den bisherigen Code um einen csv-Export der relevanten MES-Python Daten erweitert. Der CM ABM Code mit 7 Teammitgliedern und ohne Stakeholder wurde für 100 Zeitschritte ausgeführt. – Die so erstellte csv-Datei  lässt sich problemlos im Code Interpreter importieren. Auf Wunsch zeigt chatGTPplus den hinterlegten Python-Code, den man natürlich auch wieder kopieren kann.

Der Inhalt der csv-Datei wird automatisch als Tabelle und als Graphiken angezeigt. Die Graphiken lassen sich problemlos per rechtem Mausklick kopieren:

 

Abbildung 1: CM ABM Ergebnisse nach 100 Zeitschritten, dargestellt vom chatGPTplus Code Interpreter.

ChatGPTplus liefert auch direkt Erläuterungen mit:

  1. Collective Mind Similarity over Time: This plot represents the similarity metric of the collective mind of the team members over time. It appears that the similarity increases over time, which may indicate that the team members are becoming more aligned in their goals.
  2. Team Performance over Time: This plot represents the performance of the team over time. Similar to the similarity metric, the performance also seems to increase over time, possibly indicating that the team’s performance improves as the members become more aligned.

ChatGPTplus verfällt zwischendurch immer mal wieder ins Englische, obwohl ich in Deutsch mit dem System kommuniziere. Diese Beschreibung kann einem den Eindruck von ‚Verständnis‘ aufdrängen: In jedem Fall ist nicht zu leugnen, dass chatGPTPlus meine bisherige Kommunikation zur CM ABM Erstellung kennt. – Ob ein Deep Learning vorliegt kann ich natürlich nicht beantworten.

Ich habe nach einfachen statistischen Auswertungen gefragt: Dem Glätten der Kurven, der Standardabweichung und dem entsprechenden Zeichnen von Graphen:

 

Abbildung 2: Geglättete CM ABM Ergebnisse nach 100 Zeitschritten mit Standardabweichung, berechnet und dargestellt vom chatGPTplus Code Interpreter.

Auf die Frage nach weiteren statistischen Auswertungen wurde mir die Korrelationsanalyse (zwischen Collective Mind Similarity und Collective Mind Teamperformance), die Analyse der Volatilität und die Anomalieerkennung angeboten. Die Korrelationsanalyse liefert wie erwartet eine Korrelation von 0,995, da die Teamperformance direkt aus der Similarity berechnet wurde. Die Analyse der Volatilität ergab eine zusätzliche graphische Darstellung der Volatilität über den Zeitschritten und die Anomalieerkennung mittels Z-Score ergab keine Anomalien. – Immer begleitet von Erläuterungen und der Möglichkeit den verwendeten Code zu kopieren.

Im Zusammenhang mit der Anomalieerkennung habe ich nach weiteren Analysemöglichkeiten gefragt. chatGPTplus verweist auf die ML-Algorithmen Isolation Forest, One-class SVM, local Outlier Factor und Autoencoder.

Ich bitte um die Durchführung von One-class SVM. chatGPTplus ‚bedauert‘, dass diese Analyse nicht möglich ist, da diese ML-Algorithmen wegen fehlender ML-Bibliotheken nicht ausführbar sind. – Liefert aber den notwendigen Python Code, den man wieder kopieren kann, um ihn z.B. in Colab ablaufen zu lassen.

Alles in allem eine beeindruckende Leistung, wobei mich die Beratung zu den verschiedenen Algorithmen noch fast mehr beeindruckt, als die Ausführung und die graphische Repräsentation der Ergebnisse diverser statistischer Algorithmen.   

AI & M 4.0: (Collective Intelligence)**2 – Collective Mind Agent Based Model mit GPT-4/chatGPTplus erstellt!

In diesem Blog-Beitrag beschreibe ich meine weiteren Erfahrungen zur Modellierung und Programmierung eines Collective Mind Agent Based Models (CM ABM). 

Anders als beim Blog-Beitrag vom Februar 2023 benutze ich als ‚Erweiterung‘ meiner kognitiven Fähigkeiten chatGPTplus, also die Bezahlversion von chatGPT auf der Basis von GPT-4. Außerdem soll dieses Mal ein dynamisches ABM entwickelt werden, das auf MESA Python beruht und die zeitliche Entwicklung eines Team Collective Mind‘s modelliert.

Der Titel (Collective Intelligence)**2, also Collective Intelligence zum Quadrat, weist  daraufhin, dass es in diesem Beitrag in mehrfacher Hinsicht um Collective Intelligence geht: Ich benutze zum einen unserer aller Collective Intelligence, die in GPT-4 trainiert vorliegt und zum anderen die hybride Collective Intelligence von GPT-4 und mir. Außerdem ist ein CM ABM ein Team Collective Intelligence Modell.

Vor zwei Wochen habe ich mit der Entwicklung des CM ABM begonnen, indem ich chatGPTplus eine Aufgabenstellung als Prompt eingab. Diese anspruchsvolle Aufgabenstellung ist weiter unten im Anhang dieses Beitrages zu finden. Meine Erwartung war nicht, dass chatGPTplus diese Aufgabenstellung sofort ohne Kommunikation mit mir umsetzen kann. Jedoch ist meine Erfahrung zur ‚Erweiterung‘ meiner kognitiven Fähigkeiten durch chatGPTplus derart positiv, dass diese Collective Intelligence Erfahrung, bestehend aus AI und Mensch, mehr als nur einmal bei mir Gänsehaut erzeugte. – Der Zuwachs an Geschwindigkeit sowie wissenschaftlicher Kreativität und Python Kompetenz liegt deutlich näher am Faktor 100 als am Faktor 2!

Ich fasse meine Collective Intelligence Erfahrungen mit chatGPTplus zusammen:

  • ChatGPTplus hat die unten stehende Aufgabenstellung mit ersten Ideen zur Ziel-Hierarchie und deren Ähnlichkeitsvermessung umgesetzt. Es fehlten lediglich vollständig die Projekttypisierung und die Stakeholder. – Eine Einbettung von chatGPTplus in die Agentenlogik habe ich nachträglich gestrichen, da dies zu kompliziert für mich wurde.
  • Zur Verfeinerung und Verbesserung der Aufgabenstellung war es notwendig, im Dialog mit chatGPTplus das Python-Programm weiter zu entwickeln. Die Kommunikation mit chatGPTplus entspricht hierbei der Kommunikation mit einem hochintelligenten Experten: Die chatGPTplus Expertise in den Bereichen Python, Mathematik und spezifischer Modellierungskompetenz übersteigt meine bei weitem. Hierbei habe ich die Erfahrung gemacht, dass die Verwendung von Ratgebern à la ‚Wie gestalte ich die chatGPT Prompteingabe optimal?‘ für mich keinen Sinn macht. – Meines Erachtens genügt es, die Prompts so zu erstellen, dass ein menschlicher Experte:inn sie nachvollziehen kann. – Dies genügt, um eine gelungene Kommunikation mit super Ergebnissen zu erhalten!
  • Auf der Basis der Kommunikation habe ich von chatGPTplus Pythoncode erstellen lassen. Dieser Code wurde in einer Colab-Umgebung laufen gelassen. Manchmal enthielt dieser Code einen Fehler, manchmal habe ich einen Fehler eingebaut, da ich noch Veränderungen am Code vorgenommen habe. Die Rückmeldung des vollständigen Fehlers als Prompt hat immer zum direkten Auffinden des Fehlers durch chatGPTplus geführt.
  • Die Analyse der Ergebnis-Daten zeigte den ein oder anderen Mangel in der Modellierungslogik auf. Eine textuelle Beschreibung der Ergebnis-Daten als Prompt führte immer innerhalb weniger Schritte zur Behebung dieses Mangels.
  • Es gibt eine Unzulänglichkeit in der Zusammenarbeit mit chatGPTPlus, die ich nicht beheben konnte und durch einen Workaround umgehen musste: In den ersten Tagen der Bearbeitung der Aufgabenstellung stellte ich mit fortschreitender Zeit immer häufiger fest, dass chatGPTplus vorherige gute Ergebnisse vergessen hatte. Dies führte dazu, dass an Stellen, die ich als abgeschlossen und korrekt betrachtet habe, plötzlich anderer Code und nicht selten zur Aufgabenstellung nicht passender Code auftauchte. So geschah es zum Beispiel, dass die Ziel-Hierarchie Berechnung verändert wurde oder dass das 7-köpfige Team wie Stakeholder behandelt wurde, also die MBTI Typ-Zuordnung zufällig erfolgte und nicht nach dem gewünschten Schema der Aufgabenstellung. Dieses ‚Fehlverhalten‘ tauchte umso häufiger auf, je länger die Modellierung der Aufgabenstellung dauerte. Das ‚Fehlverhalten‘ wurde noch verstärkt, wenn ich chatGPTPlus darauf hinwies, dass der Code an einer bestimmten Stelle falsch ist. Dann versuchte das System ein völlig anderes Modellverhalten zu erstellen. Am vierten Tag nach insgesamt ca. 4-5 Std. chatGPTplus Interaktion, habe ich mich zu folgendem Workaround entschlossen: Ich habe das gesamte Programm selbst immer wieder integriert und alle Änderungen selbst in das gesamte Programm eingegeben. Um erwünschte neue Modellierungs-Änderungen zu erhalten, habe ich chatGPTplus lediglich eine konkrete überschaubare aber durchaus schwierige Teilaufgabe gegeben. Wenn Änderungen größere Auswirkungen im Code hatten oder mehr als ca. 1 Std. Interaktion verstrichen war, habe ich den gesamten Code wieder als Prompt eingegeben. chatGPTplus hat sich hierfür meistens bedankt 😉: Es sei hilfreich, den gesamten Code zur Verfügung zu haben. Zusammenfassend interpretiere ich dieses Verhalten von chatGPTplus dahingehend, dass chatGPTplus über kein Kurzzeitgedächtnis verfügt.

Und nun zu den Ergebnissen. – Auf Nachfrage stelle ich gerne den CM ABM Code als Colab-Jupyter Notebook zur Verfügung. Ich beschreibe hier das Modell und diskutiere einige Ergebnisse:

Das Modell basiert auf der ABM Bibliothek MESA-Python [1]. Die Teammitglieder eines Teams und die Stakeholder werden als Agenten unterschiedlichen Typs behandelt. Die Agenten werden über eine MBTI Typologie mit Persönlichkeits-Polwahrscheinlichkeit charakterisiert (siehe Anhang). Alternativ könnte auch das Standardmodell der Psychologie, das Big Five Persönlichkeitsmodell (NEO-PI-R), verwendet werden. Das Persönlichkeitsmodell lässt sich auch um Werte/Motive oder Glaubenssätze erweitern.

Entsprechend der Aufgabenstellung haben die Teammitglieder fest vorgegebene Persönlichkeiten. Die Stakeholder erhalten ihre Persönlichkeit gemäß der globalen statistischen Verteilung der MBTI Persönlichkeiten.

Jeder Agent verfügt über eine eigene dreiteilige Ziel-Hierarchie. Die dreiteilige Ziel-Hierarchie entspricht dem einfachsten Collective Mind Schema, das wahlweise als Teil eine Dilts Pyramide angesehen werden kann oder als persönliche Story Map oder als OKR [2, 3]. Die Agenten verändern ihre Ziel-Hierarchie in Abhängigkeit ihrer individuellen MBTI Präferenzen, also der individuellen Persönlichkeits-Polwahrscheinlichkeiten. Zum Beispiel ändert ein extrovertierter NT-Typ durch Kommunikation vornehmlich die oberste Ebene der Ziel-Hierarchie – ein introvertierter NT-Typ tut dies auch, jedoch nicht so oft.

Die dreiteilige Ziel-Hierarchie besteht aus alphanumerischen Zeichenketten einer bestimmten Länge. Diese Zeichenketten werden am Anfang, wenn die Simulation beginnt, per Zufall ermittelt. Der Inhalt der Ziel-Hierarchie sollte keine entscheidende Rolle für das Auftauchen prinzipiell emergenter Systemeigenschaften haben. Dies trägt der langjährigen Erfahrung aus anderen ABM Modellen und deren Systemeigenschaften Rechnung [4]. – Die Mathematik ist vielleicht doch viel entscheidender als der Inhalt!

Die Änderung der Ziel-Hierarchien erfolgt zufällig und paarweise zwischen zufällig ausgewählten Agenten. Das Ändern der Ziel-Hierarchien durch Kommunikation ist eine Form von Lernen und wird über einen Lernparameter alphaT für Teammitglieder und alphaS für Stakeholder eingestellt. Typischerweise ist alphaS kleiner gleich alphaT, da die Interaktion im Team zu einem besseren Lernen führt.

Zusätzlich erhalten die Stakeholder weniger Möglichkeiten ihre Ziel-Hierarchie zu ändern. Dies erfolgt über eine gesondert einzustellende Zeit-Steprate: Die Stakeholder erhalten zum Beispiel eine um den Faktor 200 reduziert Möglichkeit ihre Ziel-Hierarchie zu ändern. Dies trägt der Annahme Rechnung, dass die Stakeholder untereinander weniger oft kommunizieren und auch weniger oft mit den Teammitgliedern.

In der Sprache der Theorie der Selbstorganisation ergeben sich damit folgende Parameter:

Rahmenparameter: Anzahl und Persönlichkeit der Teammitglieder, Anzahl und Persönlichkeit der Stakeholder, reduzierte Steprate für die Stakeholder

Kontrollparameter: alphaT, alphaS

Ordnungsparameter: dreiteilige Ziel-Hierarchie, am Anfang gefüllt mit zufällig ermittelten Zeichenfolgen der Länge k. Die Ziel-Hierarchien werden gemäß MBTI-Profil geändert. Die Ähnlichkeiten der Ziel-Hierarchien wird über die Ratcliff-Obershelp Funktion bestimmt [5].

Die nachfolgenden Abbildungen zeigen jeweils links das resultierende emergente Systemverhalten, gemessen über die mittlere Ähnlichkeit aller Ziel-Hierarchien getrennt nach den Teammitgliedern und den Stakeholdern.

Jeweils rechts ist die Performance des Teams bzw. der Stakeholder zu sehen. Die Performance ist keine emergente Eigenschaft sondern wird über folgende Formel aus der Ähnlichkeit ermittelt: Performance=(Anzahl der Agenten eines Typs* mittlere Ähnlichkeit der Ziel-Hierarchien des Agententyps)**2. Diese Formel basiert auf folgender Betrachtung: Es werden alle bilateralen Verbindungen innerhalb einer Gruppe (Teammitglieder, Stakeholder) aufsummiert – gewichtet mit der mittleren Ähnlichkeit der Ziel-Hierarchien innerhalb der Gruppe. Wie man weiter untern sehen kann, folgt die Performance der Ähnlichkeit, natürlich erhöht um einen Faktor, der die Anzahl der Gruppenmitglieder berücksichtigt. 

Abbildung 1:
Rahmenparameter: 7 Teammitglieder mit definierter MBTI-Persönlichkeit, keine Stakeholder
Kontrollparameter: Lernparameter Teammitglieder alphaT = 0.1
Ordnungsparameter: Ziel-Hierarchie-Ähnlichkeit mit der Ratcliff-Obershelp Funktion berechnet, ermittelt aus den dreiteiligen Ziel-Hierarchien mit jeweils am Anfang zufällig generierter Zeichenfolge von k = 100 Zeichen pro Ebene

Wie man aus Abbildung 1 sehen kann, steigt die Ähnlichkeit recht schnell auf Werte von über 0,7 und die Teamperformance damit auf Werte von 21 und mehr, bei 7 Teammitgliedern. – Der Synergieeffekt beträgt also 3 und mehr!

Selbstverständlich genügt diese Aussage, wie auch die nachfolgend abgeleiteten Aussagen, keinen wissenschaftlichen Ansprüchen. Um wissenschaftlichen Ansprüchen zu genügen, müsste ich u.a. ggf. 10.000 und mehr Durchläufe errechnen lassen, um dann auf dieser Basis eine statistische Auswertung aller errechneten Werte zu erhalten. Hierauf verzichte ich, da dies meine (derzeitigen) Möglichkeiten übersteigt. Abbildung 2 zeigt den Einfluss der Stakeholder auf das Team. Die Anzahl der Stakeholder entspricht der Anzahl der Teammitglieder, ist also 7. Die Fähigkeit der Stakeholder ein Collective Mind auszubilden, bestimmt auch die Fähigkeit des Teams ein Collective Mind auszubilden: Die Stakeholder ziehen die Leistungsfähigkeit des Teams runter, obwohl die Lernrate der Stakeholder genau so groß ist wie diejenige der Teammitglieder. – Die Interaktionsrate der Stakeholder ist jedoch um den Faktor 200 geringer als die Interaktionsrate der Teammitglieder. 

Abbildung 2:
Rahmenparameter: 7 Teammitglieder mit definierter MBTI-Persönlichkeit, 7 Stakeholder mit zufälliger MBTI-Persönlichkeit, Abschottung des Teams und zwischen den Stakeholdern durch 200-fach geringere Steprate als im Team selbst.
Kontrollparameter: Lernparameter Teammitglieder alphaT= 0.1, Lernparameter Stakeholder alphaS= 0.1
Ordnungsparameter: Ziel-Hierarchie-Ähnlichkeit mit der Ratcliff-Obershelp Funktion berechnet, ermittelt aus den dreiteiligen Ziel-Hierarchien mit jeweils am Anfang zufällig generierter Zeichenfolge von k = 100 Zeichen pro Ebene

Abbildung 3 zeigt eine Simulation mit 21 Stakeholdern und einer zehnmal geringeren Lernrate der Stakeholder (diese Simulation benötigt in der Colab Umgebung ohne spezielle Hardware ca. 3-4 Stunden elapsed time). Die Ziel-Hierarchie-Ähnlichkeit der Stakeholder sinkt weiter ab und zieht das Collective Mind des Teams mit sich weiter runter. Die Stakeholder wie das Team zeigen jetzt eine Performance die weiter unterhalb der Anzahl der Teammitglieder bzw. der Stakeholder liegt.

Abbildung 3:
Rahmenparameter: 7 Teammitglieder mit definierter MBTI-Persönlichkeit, 21 Stakeholder mit zufälliger MBTI-Persönlichkeit, Abschottung des Teams und zwischen den Stakeholdern durch 200-fach geringere Steprate als im Team selbst.
Kontrollparameter: Lernparameter Teammitglieder alphaT= 0.1, Lernparameter Stakeholder alphaS = 0.01
Ordnungsparameter: Ziel-Hierarchie-Ähnlichkeit mit der Ratcliff-Obershelp Funktion berechnet, ermittelt aus den dreiteiligen Ziel-Hierarchien mit jeweils am Anfang zufällig generierter Zeichenfolge von k = 100 Zeichen pro Ebene

Was sagt uns dies?

Es sieht so aus, als wenn die hybride Collective Intelligence von chatGPTplus und mir, ein Modell gefunden hätte, das emergentes Collective Mind Verhalten eines Teams in Interaktion mit Stakeholdern recht gut abbildet. – Dies ist ein weiterer Schritt in Richtung von Management 5.0, der Synergie von AI und Management 4.0.

Anhang: Erst-Aufgabenstellung für GPT4/ChatGPTplus

Die Aufgabenstellung zur Digitalen Transformation des Unternehmens KüchenManufaktur verwende ich in meinen Management 4.0 Trainings, um eine Scrum Simulation durchzuführen und eine Ziel-Hierarchie zu erstellen. Die zugrundeliegende Theorie hierzu ist in [2], [3] zu finden.

Erzeuge ein Agent Based Model (ABM) in der Programmiersprache Python, z. B. mittels MESA Python, für ein Team von 7 Teammitgliedern und 100 Stakeholdern. Die 7 Teammitglieder und die 100 Stakeholder sind Agenten im ABM. Die Teammitglieder und die 100 Stakeholder gehören zu dem Unternehmen KüchenManufaktur, das sogenannte Weiße Ware, also u.a. Herde, Kühlschränke und Gefrierschränke herstellt. Bisher hat das Unternehmen KüchenManufaktur diese Weiße Ware ohne große Digitalisierungsfunktionen hergestellt. Jetzt soll die Weiße Ware smart werden und als Life Style Produkt positioniert werden. Der Einsatz von smarter Technologie kann auch den Einsatz von AI oder ML beinhalten. Zum Beispiel könnte eine zukünftige Anforderung für einen Kühlschrank beinhalten, dass ‚er sich von alleine füllt‘. ‚Von alleine füllen‘ bedeutet, dass er über ein intelligentes Füllmanagement verfügt, das u.a. Zugriff auf Lebensmittellieferanten hat.

Es geht also um die Digitale Transformation des Unternehmens KüchenManufaktur. Die Digitale Transformation soll mittels eine Projektes durchgeführt werden. In einem ersten Schritt ist ein Konzept für die Digitale Transformation zu erstellen. Für diesen ersten Schritt ist das ABM mittels Python zu erstellen.

Die Aufgabe der Konzepterstellung typisieren wir als Projekt mittels des Diamantmodells: Das Projekt ist für KüchenManufaktur ein Projekt mit hohem Innovationsgrad. Nicht alle Stakeholder sind vom Sinn der Digitalen Transformation überzeugt und deshalb zeigen auch recht viele Stakeholder innere Widerstände gegen das Projekt. Deshalb sprechen wir von einem hohen Missionsgrad.- Das Team hat also viel Überzeugungsarbeit zu leisten. Der Kompliziertheitsgrad der neuen smarten Weißen Ware ist eher gering bis mittelgroß. Der Managementgrad ist mittel, da KüchenManufaktur innerhalb eines Jahres mit ersten smarten Produkten auf den Markt kommen möchte.

Die Persönlichkeiten der 7 Teammitglieder beschreiben wir mittels des MBTI, wobei die dominante Persönlichkeitsdimension des jeweiligen Teammitgliedes als Wahrscheinlichkeit angegeben wird. Wir nennen vereinfacht die jeweiligen Teammitglieder entsprechend ihrer MBTI Typologie und einer MBTI-Polwahrscheinlichkeit, also:

Teammitglied 1: ENTJ heißt: Extraversion = E = 0.8, Intuition = N = 0.8, Thinking = T = 0.6, Judging = J = 0.6

Teammitglied 2: INTJ heißt: Introversion = I = 0.8, Intuition = N = 0.7, Thinking = T = 0.7, Judging = J = 0.6

Teammitglied 3: ISFP heißt: Introversion = I = 0.6, Sensing = S = 0.7, Feeling = F = 0.7, Perceiving = P = 0.6

Teammitglied 4: ISTJ heißt: Introversion = I = 0.8, Sensing = S = 0.7, Thinking = T = 0.7, Judging = J = 0.9

Teammitglied 5: ESTJ heißt: Extraversion = E = 0.8, Sensing = S = 0.9, Thinking = T = 0.7, Judging = J = 0.6

Teammitglied 6: ISTP heißt: Introversion = I = 0.9, Sensing = S = 0.9, Thinking = T = 0.6, Perceiving = P = 0.6

Teammitglied 7: ISTJ heißt: Introversion = I = 0.7, Sensing = S = 0.6, Thinking = T = 0.6, Judging = J = 0.6

Die Stakeholder erhalten per Zufall eine Persönlichkeit gemäß MBTI.

Die Aufgabe der Konzepterstellung ist erledigt, wenn die 7 Teammitglieder, die das Konzept erstellen, eine gemeinsame Ziel-Hierarchie erstellt haben. Eine Ziel-Hierarchie besteht aus Informationseinheiten, die abstrakt oder detailliert sind. Eine Vision oder ein übergeordnetes Ziel bilden die oberste Ebene, es folgen darunter größere Informationseinheiten, die in weitere Informationseinheiten runtergebrochen werden. Im Agilen Management beginnt die Ziel-Hierarchie zum Beispiel mit einer Vision, gefolgt von Epics, die in Features zerlegt werden, die Features werden in User Stories zerlegt und diese wieder in Tasks und Tasks in Subtasks usw.

Für die Generierung der Informationseinheiten kann pro Teammitglied auf chatGPT zurückgegriffen werden

Um die Ziel-Hierarchie zu erstellen, tauschen die 7 Teammitglieder gemäß ihrer Persönlichkeitspräferenzen Informationseinheiten aus. Diese Informationseinheiten werden gemäß ihrer Präferenzen und der damit verbundenen Wahrscheinlichkeiten in die persönliche Ziel-Hierarchie aufgenommen.

Im ABM Model wird der Informationsaustausch in Zeitschritten durchgeführt. Wir definieren die Performance des Teams über die Ähnlichkeit der persönlichen Ziel-Hierarchien. Wenn alle persönlichen Ziel-Hierarchien identisch sind, sprechen wir von einem Collective Mind. Der Collective Mind kann durch die Kommunikation mit den Stakeholdern stabilisiert oder destabilisiert werden. Die Ähnlichkeit der Ziel-Hierarchien aller Stakeholder und der 7 Teammitglieder ist ein Maß für den Collective Mind im Team bzw. im Stakeholderkreis bzgl. der Digitalen Transformation.

Zeichne den Verlauf des Colletive Mind im Team und den Verlauf des Collective Mind für den Stakeholderkreis über die Zeit.

[1] Complexity Explorer (2023) MESA-Python Lecture, https://www.complexityexplorer.org/courses/172-agent-based-models-with-python-an-introduction-to-mesa/segments/17326, Santa Fe Institute, zugegriffen am 30.04.2023

[2] Oswald A, Köhler J, Schmitt R (2017) Projektmanagement am Rande des Chaos. 2. Auflage, Springer, Heidelberg, auch in englischer Sprache unter ‚Project Management at the Edge of Chaos‘ verfügbar.

[3] Köhler J, Oswald A. (2009) Die Collective Mind Methode, Projekterfolg durch Soft Skills, Springer Verlag

[4] Epstein J M, Axtell R (1996) Growing Artificial Societies – Social Science from the Bottom Up, The Brookings Institution, Washington D.C.

[5] Wikipedia (2023) Ratcliff-Obershelp Funktion, https://de.wikipedia.org/wiki/Gestalt_Pattern_Matching#:~:text=Gestalt%20Pattern%20Matching%2C%20auch%20Ratcliff,im%20Juli%201988%20im%20Dr.