AI & M 4.0: Collective Mind, Proxies und word embedding

Eine Warnung vorweg: Ich benutzte im Blog Mathematik und AI Techniken, da ich versuche, den Begriff Collective Mind damit besser auszuleuchten. Vielleicht motiviert dies den ein oder anderen Leser, den Blog-Beitrag genau aus diesem Grunde zu lesen.

Der Begriff Collective Mind wurde erstmals 2007 von Jens Köhler und mir, im Zusammenhang mit der Erstellung unseres Buches „Die Collective Mind Methode“, geprägt [1]. Später ist der Collective Mind, als einer der zentralen Begriffe, in Management 4.0 eingegangen.

Wir verstehen unter Collective Mind (CM) einerseits einen kollektiven Flow-Zustand, der für Team oder organisationale Hochleistung steht und andererseits steht er auch für einen Operator, also Modelle und Theorien, der diesen Zustand beschreibt und herbeiführt.

Wir benutzen in der Collective Mind Theorie zwar verschiedene Modelle (Persönlichkeitkeitsmodelle, Wertemodelle, Team-Heterogenitätsmodelle, Kommunikationsmodelle usw.) mit denen wir den Collective Mind herbeiführen; und das funktioniert sehr gut, wie wir in mehr als 15 Jahren Praxis zeigen konnten, jedoch ist es uns bisher nicht gelungen den Flow-Zustand selbst, den Collective Mind, durch ein Modell oder eine Theorie zu beschreiben. Wir arbeiten stattdessen mit Metaphern oder wir verwenden Stellvertretermodelle, kurz Proxies, um ihn zu beschreiben. Diese Proxies sind:

  • Mitwirkungs- und Redezeit: Der CM ist dann besonders stark, wenn alle Teammitglieder nahezu gleichstark mitwirken, also sie zum Beispiel in nahezu allen Teammeetings anwesend sind und ihre Redezeit nahezu gleich verteilt ist.
  • Ähnlichkeit in der Wort- und Bild-Wahl: Der CM ist dann besonders stark, wenn alle Teammitglieder ähnliche Worte und/oder Bilder benutzen, um einen Projektsachverhalt zu beschreiben. – Es findet ein Spiegeln im gesprochenen Wort und im Bild statt.
  • Zufriedenheit: Der CM ist besonders stark, wenn alle Teammitglieder der Arbeit im Team eine sehr hohe Zufriedenheit attestieren und sie das Gefühl haben einen sinnvollen Beitrag zu leisten.
  • Spiegeln der Körpersprache: Der CM ist besonders stark, wenn alle Teammitglieder in ihrer Körpersprache die Köpersprache der anderen spiegeln.

Im Idealfall treffen für ein CM Hochleistungsteam alle diese Proxies gleichzeitig zu.

Diese Stellvertretermodelle können sich auch über die Zeit entwickeln: Zum Beispiel benutzen die Teammitglieder am Anfang völlig unterschiedliche Beschreibungen (Sätze, Bilder), um ein Projektziel oder einzelne Anforderungen zu konkretisieren. Steigt der Collective Mind, werden die Unterschiede geringer. Jedoch kann im Team etwas passieren, das den Collective Mind zerstört oder wieder ins Wanken bringt. Die Unterschiede in den Proxies werden entsprechend wieder größer. Beispiele für solche Ereignisse, die den CM wieder verändern, sind neue Teammitglieder oder wechselhafte Anwesenheiten von Teammitgliedern oder neue Erkenntnisse, die nicht von allen im gleichen Maße gesehen und geteilt werden.

Die Leser dieses Blogs dürften diese empirischen Aussagen bei geneigter Bobachtung in ihren Teams sehr schnell bestätigen. Ich verweise diesbezüglich auch auf das Whitepaper von Armatowski et. al., das anlässlich der IPMA Research Conference zum Thema Selbstorganisation erstellt wurde [2]. – Das Whitepaper skizziert für das Autorenteam den Prozess der Selbstorganisation, also der Ausbildung eines CM’s, während der IPMA Research Hackdays 2020.

Im Bereich der Wissenschaften, insbesondere derjenigen, die Sachverhalte auch mathematisch beschreiben, hat man sich inzwischen weitgehend daran gewöhnt die Realität mit den Proxies für die Realität gleichzusetzen: Zum Beispiel werden elektrische Erscheinungen einem elektrischen Feld E zugeschrieben (Fett gedruckte Buchstaben bezeichnen hier eine sogenannte Vektorgröße, die durch einen Betrag und eine Richtung beschrieben wird). – Wahrscheinlich käme kaum jemand auf die Idee, E als Proxy zu betrachten. – Falls es doch mal durch einen genialen Wissenschaftler geschieht, bringt dieser die Erkenntnis einen Schritt weiter, in dem er die dem Proxy hinterlegten Annahmen radikal hinterfragt.

Alle anderen dürften über Jahrzehnte oder sogar Jahrhunderte hinweg das elektrische Feld E mit der „wahren“ elektrischen Realität gleichsetzen. – Lediglich im Bereich der Quantenmechanik ist diese breite Sicherheit nie so wirklich wahrgeworden. – Die Unterschiede zwischen alltäglicher Erfahrung und quantenmechanischer Beobachtung und den assoziierten Proxies ist nach wie vor zu groß.

Proxies sind also nur Stellvertreter, also Modelle oder Theorien, die unsere Beobachtungen zusammenfassen bzw. abstrahieren. So gesehen ist es sicherlich legitim die obigen Collective Mind Proxies für den „wahren“ Collective Mind zu verwenden. Verwendet man zusätzlich die Mathematik zur Beschreibung, so ergibt sich ein deutlich besseres und erweitertes Verständnis der Zusammenhängen, nicht selten werden Zusammenhänge erst sichtbar. – Eine Aussage, die nach meiner Erfahrung immer gültig ist, vorausgesetzt man berücksichtigt wie auch bei anderen (mentalen) Modellen, dass Proxies nicht zwangsläufig die Realität sind.

Setzt man die mathematische Beschreibung in Technologie, in unserem Fall in Artificial Intelligence Technologie, um, so lässt sich der CM viel besser fassen. Wie wir gleich sehen werden, lassen sich die Collective Mind Proxies in der Praxis gut operationalisieren und gut überprüfen.

Wir führen das mathematische Gebilde „Tensorfeld Collective Mind CM(x,t)“ ein, das vom Ort x und der Zeit t abhängt.

Was verstehe ich darunter?

Im Kontext von Management oder Projekt Management kann man sich sehr gut vergegenwärtigen, dass der Collective Mind wie ein abgeschossener Pfeil eine Richtung haben muss, denn Projektziele oder die Ziele einzelner Personen oder Organisationen werden u.a. durch eine Richtung beschrieben. Er hat auch einen Betrag, nämlich die Energie, die im Team, in der Person oder der Organisation zu diesem Ziel vorhanden ist. Dass der CM sich zeitlich ändern kann, habe ich schon oben erläutert. – Er kann natürlich auch vom Ort abhängen. – Der Collective Mind innerhalb eines (größeren) Teams oder einer Organisation kann durchaus von Ort zu Ort unterschiedlich sein: Verschiedene Sub-Teams eines Teams haben unterschiedliche Collective Minds, verschiedene Sub-Organisationen (Abteilungen) einer Organisation haben wahrscheinlich auch unterschiedliche Collective Minds.

Mit diesen Annahmen setze ich die obigen verbalen Proxies in Mathematik um: Die Aussage „in etwa gleiche Mitwirkungs- und Redezeit“ kann man in Differenzen umsetzen, indem wir die Redezeiten jeder Person mit jeder anderen Person vergleichen. Es entsteht eine Matrix, oder allgemeiner ein Tensor oder Tensorfeld. – Die bekannteste google AI/ML Plattform auf der Basis neuronaler Netzwerk heißt tensorflow, weil Tensoren durch das Netzwerk aus künstlichen Neuronen fließen [3].

Auch die Ähnlichkeit in der Wortwahl kann man durch Differenzen darstellen. Die Differenzen in der Wortwahl bilden ebenfalls ein Orts- und Zeit-abhängiges Tensorfeld.

Auf der Basis der obigen verbalen Proxies führen wir eine mathematische Form für den Operator des Collective Minds, CMO(x,t) (das hochgestellte O steht für Operator), ein:  

CMO(x, t) ~ proxyCMO(x, t) = SO(x, t)*MO(x,t)

Diese Gleichung drückt aus, dass wir annehmen, dass das „unbekannte Wesen“ CMO(x, t) näherungsweise durch einen proxyCMO(x,t) beschrieben werden kann; und dass zwei Faktoren – nach jetziger Erkenntnis – diesen proxyCMO(x,t) bestimmen. Ich habe Faktoren gewählt, um auszudrücken, dass im Idealfall alle zwei Faktoren, SO und MO, vorhanden und groß sein müssen, um einen großen CMO(x,t) zu erhalten.

SO(x,t) = Similarity: Dieser Faktor “misst” Mitwirkungs- und Redezeit sowie Wortähnlichkeit (Ähnlichkeiten in Bildern berücksichtigen wir der Einfachheit wegen hier nicht). Wir können diese beiden Proxies gut in einer Größe zusammenfassen: Wählen wir SO(x,t) geeignet, so kann SO(x,t) nur dann eine hohe Similiarity ausweisen, wenn man gleich große Text – oder Redeblöcke miteinander vergleicht und dies kann nur dann der Fall sein, wenn die Teammitglieder in etwa gleich lange anwesend sind und gleichlange sprechen.

MO(x,t) = Mood: Dieser Faktor misst die Stimmung, die Zufriedenheit im Team oder in der Organisation. Dieser Faktor schließt auch die Häufigkeit und Intensität des körperlichen Spiegelns ein.

Ob man mehrere Faktoren benötigt, ist mir zurzeit noch nicht klar, denn SO kann nur dann hoch sein, wenn MO hoch ist. – Nur zufriedene Teammitglieder reden in etwa gleich viel mit einer ähnlichen (spiegelnden) Kommunikation in Sprache und Körper. – Jedoch könnte man Unterschiede zwischen Körpersprache und gesprochenem Wort benutzen, um Dysfunktionalitäten aufzudecken. Hierzu wäre eine entsprechende visuelle AI notwendig und dies geht in jedem Fall weit über diesen Blog hinaus.

Ich tue jetzt mal so, als wenn einige Jahrzehnte verstrichen seien und wir uns wie beim elektrischen Feld E daran gewöhnt hätten, Proxy und Realität gleichzusetzen:  Wir setzen also in der obigen Gleichung CMO und proxyCMO gleich und wir nehmen der Einfachheit wegen an, dass die Similarity genügt, um den CMO zu beschreiben:

CMO(x, t) = SO(x, t)

SO(x, t) ist eine symmetrische Matrix deren Elemente Sij(x,t) Differenzen von zwei Vektoren sind, nämlich die Differenz zwischen dem Wortanteil und der Wortwahl des Teammitgliedes i und derjenigen des Teammitgliedes j. Wortanteil und Wortwahl jedes Teammitgliedes werden durch einen Vektor in einem verbalen Raum ausgedrückt.

Jetzt müssen wir „nur noch“ einen geeigneten Operator SO(x,t) finden, der in einem verbalen Raum Vektoren aufspannt. – Ohne die Fortschritte in AI/ML wäre hier das Ende meiner Ausführungen erreicht. – Die enormen Fortschritte in der Verarbeitung der natürlichen Sprache mittels AI/ML, also dem AI/ML-Teilgebiet NLP (Natural Language Processing), machen es mir möglich, weiterzukommen.

Im Jahre 2013 wurde die fundamentale Idee veröffentlicht, Text bzw. Worte in Vektoren zu transferieren: Es werden Worte in einen Vektorraum eingebettet. Deshalb nennt man diese Technik auch word embedding. Word embedding wird auch mit dem Namen der wahrscheinlich bekanntesten AI/ML NLP Bibliothek „word2vec“ von google gleichgesetzt. [4, 5]. Jedem Wort wird hierzu ein token, eine Zahl, zugeordnet und dieses token wird in einen hochdimensionalen Raum, typischer Weise mit 300 Dimensionen! eingebettet [6, 7, 8]. Die hohe Dimension des (Wort-) Raumes erlaubt es, Worte nach 300 Dimensionen zu differenzieren. Das Verblüffende ist, dass Neuronale Netzwerke, die mittels Texten trainiert werden, die Worte eines Textes nicht beliebig in diesem Raum verteilen, sondern gemäß Sinn, wie wir ihn auch wahrnehmen. Man kann dann sogar mit diesen Wortvektoren „rechnen“, z.B. König-Mann+Frau = Königin. Dieses Rechen hat auch dazu geführt, dass man Vorurteile und Diskriminierungen in Datensätzen aufgedeckt hat, also z.B. Arzt-Mann+Frau = Krankenschwester. – Wohlgemerkt, Datensätze die unsere diskriminierende Realität beschreiben.
Wer sich von der hinterlegten Technik beeindrucken lassen möchte, den verweise ich auf die word embedding Illustration von tensorflow [9]. 

Dies word embedding ist für mich eine mehr als nur erstaunliche Erfahrung. – Sie  stützt einen meiner wichtigsten Glaubenssätze: „Das Sein unterscheidet nicht zwischen belebt und unbelebt, oder zwischen bewusst und unbewusst, wir treffen überall auf die gleichen fundamentalen Prinzipien, auch wenn deren Erscheinungen  auf den ersten Blick sehr unterschiedlich sein mögen.“

Eine der bekanntesten NLP Bibilotheken, die word2vec Funktionalität integriert, ist spaCy [10]. Ich benutze spaCy, um SO(x, t) an einem einfachen Beispiel zu berechnen. Ich lehne mich an Beispiele aus [11] an und zeige im Folgenden den Code wie er in einem Jupyter Notebook [12] in der google Colab-Umgebung [13] lauffähig ist. Zunächst eine kleine Illustration von word embedding:

pip install spacy

!python -m spacy download en_core_web_md

import en_core_web_md

nlp = en_core_web_md.load()

vocab =nlp(‚cat dog tiger elephant bird monkey lion cheetah burger pizza food cheese wine salad noodles macaroni fruit vegetable‘)

words = [word.text for word in vocab]

vecs = np.vstack([word.vector for word in vocab if word.has_vector])

pca = PCA(n_components=2)

vecs_transformed = pca.fit_transform(vecs)

plt.figure(figsize=(20,15))

plt.scatter(vecs_transformed[:,0], vecs_transformed[:,1])

for word, coord in zip(words, vecs_transformed):

  x,y = coord

  plt.text(x,y, word, size=15)

plt.show()

Unter Anwendung des obigen Codes wird folgendes Bild erzeugt:

Abbildung 1: 300-dimensionales Wortvektor-Modell projiziert auf 2 Dimensionen

Ich gehe nicht auf die Details des Code-Beispiels ein, lediglich einige Hinweise, um das Wesentliche des Blogbeitrags zu erfassen: Ich benutze ein vortrainiertes englisches Vektormodell „en_core_web_md“ und übergebe diesem einige englische Worte ‚cat dog tiger elephant bird monkey lion cheetah burger pizza food cheese wine salad noodles macaroni fruit vegetable‘, die das vortrainierte Modell in einem 300-dimensionalen Vektorraum verortet. Um diese Verortung darstellen zu können, wird die Verortung mit der mathematischen Technik PCA auf zwei Dimensionen in der Abbildung 1 projiziert. – Dadurch kommt es zu visuellen Überlappungen, wie man im Bild sehen kann. Auch erkennt man sehr schön, dass das vortrainierte Modell gemäß der Bedeutung der Worte Bedeutungscluster gebildet hat.

Wenden wir uns jetzt der Similarity zu, indem wir die Similarity von Vektoren berechnen:

Abbildung 2: Zwei übliche Definitionen von Wort Similarity

Abbildung 2 erläutert die beiden gebräuchlichen NLP Similarities. Word2vec verwendet hierbei lediglich die Cosine-Similarity. Werden ganze Sätze oder Texte auf Similarity geprüft „misst“ word2vec die Ähnlichkeit der Texte über Mittelwertbildung der beteiligten Vektoren bzw. Worte.

Die damit verbundenen Ergebnisse sind verblüffend, wie das nachfolgende einfache Beispiel zeigt:

doc1 = nlp(‚I visited England.‘)

doc2 = nlp(‚I went to London‘)

doc1.similarity(doc2)

Die Cosine-Similarity liegt für dieses Beispiel bei sα = 0,84. Die Similarity wird von word2vec auf den Bereich 0 bis 1 normiert (Anm.: Die Similarity könnte auch zwischen -1 und 1 liegen, was für unsere Betrachtung besser geeignet wäre).

Jedoch… die Euclidean-Similarity, berechnet mittels des Codes aus [14], ergibt eine sehr geringe Similarity von sr = 0,08.

D.h. Die Wordvektoren zeigen zwar in die gleiche Richtung liegen aber in völlig unterschiedlichen Raumbereichen des 300-dimensionalen Wortvektorraumes. – Beide Aussagen sind also nicht identisch, haben jedoch eine hohe Bedeutungs-Affinität.

Ein anderes Beispiel: Ich möchte die Similarity von zwei Texten aus unserem Buch Management 4.0 [15] vergleichen: Ich vergleiche eine Kurzfassung der Management 4.0 Definition mit der Langfassung der Definition:

doc1 = nlp(‚With a systemic leadership approach, Management 4.0 provides the guiding competence for viable learning organizations in complex situations and environments. Management 4.0 integrates an Agile Mindset, the universal principle of self-organization as a governance guideline, and relevant work techniques, for sustainable working models of the future.‘)

doc2 = nlp(‚We understand Agile Management as a leadership and management practice, to be able to act in an agile and proactive way in a complex environment characterized by uncertainty.  It is described as an Agile Mindset with a focus on: leadership for which self-leadership is the basis; leadership, which is based on a respect for basic human needs; leadership, which demands an understanding of complex systems and promotes their regulation through iterative procedures; people who self-organize in teams; fluid organizations, which promote adaptable and fast delivery of useful results and create innovative customer solutions through proactive dealing with changes‘)

Das Ergebnis für die Cosine-Similarity, von word2vec, ist wieder verblüffend:

doc1.similarity(doc2)

sα = 0,97

Die Euclidean-Similarity berechnet mit dem Code aus [14] ergibt sr = 0,46. Also verglichen mit der Similarity aus dem vorherigen Beispiel sehr hoch.

Auf der Basis dieser Beispiel-Daten kann ich einen Beispiel Similarity-Operator angeben: Wir nehmen der Einfachheit wegen an, dass die obigen beiden Texte aus dem Management 4.0 Buch von zwei Personen gesprochen wurden. Damit ergibt sich der Collective Mind Operator dieser beiden Personen zu:

SO(x, t) ist eine symmetrische 2*2 Matrix (ich bitte darum, kleine farbliche Unsauberkeiten in der Formeldarstellung zu übersehen, hier bei sα): Die Nicht-Diagonal Elemente sind hier keine einfachen Skalare, sondern bilden jeweils einen Vektor in einem Similarity Raum. Da wir mit überschaubarer Mathematik (d.h. einfacher Matrizenrechnung) weiterkommen wollen, wandeln wir diese Vektoren in Skalare um. Die einfachste Weise, dies zu tun, ist sr(x,t) nicht zu berücksichtigen und die resultierende Größe als Skalar anzusehen. Ich könnte auch die Länge des Similarity-Vektors in die obige Matrix einsetzen. – Der Vektorbetrag wäre dann so etwas wie eine integrierte Similarity. – Das Weglassen von sr(x,t) hat im Rahmen dieser Vereinfachungen keinen wesentlichen Einfluss auf die nachfolgenden Ausführungen.

Damit ergibt sich:

Man kann diese Matrix auch als sogenannte Heat Matrix darstellen, in dem die Similarities farblich codiert werden: Dies wurde in [16] benutzt, um die Similarity der Reden deutscher Politiker visuell darzustellen.

Wir haben bisher zwar einen Operator für den CM definiert, jedoch den CM selbst nicht ermittelt. Dies tue ich jetzt:

Für den Operator CMO(x, t) können wir sogenannte Eigenwerte und Eigenvektoren berechnen. Eigenvektoren sind diejenigen Vektoren, die unter der Anwendung des Operators lediglich ihren Betrag verändern, jedoch ihre Richtung beibehalten. Die Veränderung des Betrages bei Anwendung des Operators wird Eigenwert genannt. Den größten Eigenwert und dessen zugehörigen Eigenvektor assoziiere ich mit dem Collective Mind Vektor CMvektor dieser beiden kommunizierenden Personen (es gibt noch einen zweiten Eigenwert und Eigenvektor, der aber hier (wahrscheinlich) keinen Sinn machen):

Das Internet stellt auch für solche Berechnungen eine App zur Verfügung [17]. Der Vektor CM bekommt damit folgende mathematische Gestalt:

Der Eigenvektor liegt also auf der „Diagonalen zwischen zwei Personen“ und hat einen Eigenwert der größer als 1 und maximal 2 ist. Die Mathematik spiegelt mein Verständnis eines CM wider. Deshalb sage ich: „Gar nicht schlecht für den Anfang 😉, jedoch werden Synergieeffekte (d.h. Eigenwerte größer 2) und Effekte des gegenseitigen Blockierens (d.h. Eigenwerte kleiner 1) nicht abgebildet. Letzteres hängt auch damit zusammen, dass die word2vec Similarity per Definition nicht kleiner Null ist.

In unserem Beispiel ist der Eigenvektor und der Eigenwert statisch, da die Similarity keine explizite Zeitabhängigkeit enthält. Im Allgemeinen ist die Similarity eine  zeit- und ortsabhängige Größe. Damit werden die Berechnungen viel aufwendiger, unterscheiden sich jedoch nicht von den einfachen Ausführungen hier.

Es ist also möglich Zeitscheiben zu definieren, in denen eine AI synchron in Teammeetings die Gespräche aufnimmt, die Gespräche transkribiert und dann wie hier geschildert (und evtl. mit weiteren AI Techniken) die Similarity berechnet. Die Darstellung der Similarity als Zeitreihen und des zeitlichen Verlaufes des Vektors CM könnte als Feedback-Mechansimus eingesetzt werden, um eine Teamreflexion zu unterstützen. – Die AI übernimmt damit eine „Coaching“ Funktion. – Dieser Blog-Beitrag skizziert also die Ausgestaltung der AI-Anwendung Collective Mind im IPMA Kompetenz Bereich Teamarbeit, aus meinem Dezember 2021 Blog-Beitrag.

[1] Köhler J, Oswald A. (2009) Die Collective Mind Methode, Projekterfolg durch Soft Skills, Springer Verlag

[2] Armatowski S., Herrmann P., Müller M., Schaffitzel N., Wagner R (2021) The importance of Mindset, Culture and Atmosphere for Self-Organisation in Projects, White Paper IPMA, erstellt anläßlich der IPMA Research Conference 2020

[3] tensorflow (2022) tensorflow.org, zugegriffen am 16.04.2022

[4] google (2022) word2vec, https://code.google.com/archive/p/word2vec/, zugegriffen am 16.04.2022

[5] Wikipedia (2022) word2vec, https://en.wikipedia.org/wiki/Word2vec, zugegriffen am 16.04.2022

[6] Karani D (2022) Introduction to Word Embedding and Word2Vec, https://towardsdatascience.com/introduction-to-word-embedding-and-word2vec-652d0c2060fa, zugegriffen am 20.04.2022

[7] Megret P (2021) Gensim word2vec tutorial,  https://www.kaggle.com/pierremegret/gensim-word2vec-tutorial , zugegriffen am 20.04.2022

[8] Delaney J (2021) Visualizing Word Vectors with t-SNE, https://www.kaggle.com/jeffd23/visualizing-word-vectors-with-t-sne/notebook , zugegriffen am 20.04.2022

[9] word embedding playground (2022) http://projector.tensorflow.org/

[10] Spacy (2022) https://spacy.io/models/de, zugegriffen am 20.04.2022

[11] Altinok D (2021) Mastering spaCy, Verlag Packt, kindle edition

[12] Jupyter Notebooks (2021) https://jupyter.org/, zugegriffen am 02.12.2021

[13] Colab (2021) https://colab.research.google.com/

[14]   NewsCatcher Engineering Team (2022) https://newscatcherapi.com/blog/ultimate-guide-to-text-similarity-with-python, zugegriffen am 20.04.2022

[15] Oswald A, Müller W (2019) Management 4.0 – Handbook for Agile Practices, Verlag BoD, kindle edition

[16] Timmermann T (2022) https://blog.codecentric.de/2019/03/natural-language-processing-basics/, zugegriffen am 20.04.2022

[17]   Виктор Мухачев (2022) https://matrixcalc.org/de/, zugegriffen am 20.04.2022   

AI & M 4.0: Hybrid Collective Intelligence in Organisation und Gesellschaft

Dieser Blogbeitrag ergänzt meinen vorherigen Blogbeitrag, insbesondere die dort gelisteten Kernaussagen des Buches „The Age of AI: And Our Human Future“ des ehemaligen amerikanische Außenminister Kissinger sowie des ehemaligen google CEO Schmidt und des MIT Professor Huttenlocher [1].

Hybrid (Collective) Intelligence liegt vor, wenn unsere menschliche (kollektive) Intelligenz durch die (kollektive) Intelligenz von Artificial Intelligence ergänzt wird und sich damit eine Erweiterung der Wahrnehmung unserer Realität ergibt, so dass wir komplexe Fragestellungen beantworten können, die wir ohne AI nicht oder nur mit deutlich größerem Aufwand beantworten könnten. Diese Definition lehnt sich an diejenige in [2] an.

Hybrid (Collective) Intelligence führt insbesondere für das Projekt Management zu drei zentralen Veränderungen:

  • Der Innovationsprozess wird sich substanziell verändern, da ein oder mehrere AI Systeme den F&E Suchraum allein oder in Zusammenarbeit mit Menschen erheblich erweitern und verändern werden [3].
  • Das (Projekt) Management hat zu berücksichtigen, dass Aufgaben zwischen Mensch und AI, alleine oder zusammen, zu verteilen sind. – Entscheidungsprozesse werden sich in dieser Zusammensetzung erheblich verändern [4]. – Man siehe hierzu auch die Liste an AI/ML Erweiterungen im letzten Blog-Beitrag.
  • AI Systeme werden in nahezu alle Projektlösungen einfließen und damit wird AI zur Kernkompetenz in der Projektarbeit. Gleichzeit sind die Auswirkungen der AI Projektlösungen für die Stakeholder, die Gesellschaft und die Natur zu berücksichtigen.

Ich verwende als Definition von Intelligenz eine recht unübliche Definition, die meines Erachtens aber umso treffender ist. Diese Definition wurde wohl erstmals von Alex Wissner-Gross vorgeschlagen [5, 6]: “Intelligence is the ability to maximize future options in order to accomplish complex tasks.” – Diese Definition lässt sich u.a. in eine mathematische Gleichung übersetzen und ist universell auf alle Objekte (belebte, unbelebte, soziale) anwendbar. Im Kontext von AI bedeutet dies zum Beispiel, dass eine AI zur Natural Language Processing (NLP) nicht nur die trainierten Texte oder recht ähnliche in Frage-Antwort Situationen wiedererkennt, sondern die Flexibilität besitzt auch Fragen zu beantworten, die nicht genau den trainierten Fragen entsprechen. Neben der neuronalen Architektur des Neuronalen Netzwerkes wird dies vor allem durch die vielen Parameter-Freiheitsgrade erreicht. – Die Freiheitsgrade von State-of-The-Art AI NLP Systemen umfassen aktuell mehrere 100 Million Parameter.

Die Fähigkeit zukünftige Optionen zu maximieren, ist also die Fähigkeit Freiheit bzw. freies Handeln unter antizipierten zukünftigen Randbedingungen zu maximieren. Falls wir nicht wollen, dass die AI „ihre Freiheit“ (in Zukunft) auf Kosten unserer Freiheit maximiert, ist es notwendig, Randbedingungen für sie zu setzen. Dies bedeutet die Einführung einer Governance für Hybride (Collective) Intelligence (kurz HCI Governance), die zudem adaptiv, also in einem PDCA-Zyklus, in die Zukunft fortzuschreiben ist.
Die Einführung einer HCI Governance wird umso notwendiger, je mehr sich die AI von einer schwachen AI zu einer starken (und allgemeinen) AI oder Superintelligenz entwickelt [7, 8]. – Die genaue Verortung des aktuellen Intelligenzgrades der AI-Systeme und deren zukünftiger Entwicklung ist jedoch nicht wesentlich, denn wir wissen heute schon, dass eine HCI Governance Not tut, da neben den Segnungen der Realitätserweiterungen durch AI auch schon Freiheitseinschränkungen (u.a. Diskriminierungen, fake news, Beeinflussung von demokratischen Wahlen) durch AI aufgetreten sind.

Peeters et al. haben unlängst in ihrem sehr lesenswerten Artikel „Hybrid Collective Intelligence in a Human-AI Society“ drei verschiedene Basis-Haltungen zum Umgang mit AI identifiziert [9]:

  • Technology-centric perspective
  • Human-centric perspective
  • Collective-Intelligence perspective

Das Bemerkenswerte ihrer Analyse, die durch das niederländische Verteidigungsministerium gesponsort wurde, ist, dass sie für jede dieser Haltungen (im Artikel sprechen sie von „perspectives“) Glaubenssysteme und dazugehörige Kontexte identifiziert haben. – Also ganz im Sinne von Management 4.0.

Ich nenne hier, als Beispiel, nur jeweils einen Glaubenssatz pro Haltung:

  • Technology-centric perspective: “When sufficiently developed, AI technology can applied to solve any problem.”
  • Human-centric perspective: “Artificial intelligence only exhibits part of human cognition and is therefore insufficient for many real-world problems.”
  • Collective-intelligence perspective: “Intelligence should not be studied at the level of individual humans or AI-machines, but at the group level of humans and AI-machines working together.”

In [10] werden die EU-Haltung und die USA-Haltung miteinander verglichen: Die EU-(Administrations-)Haltung ist tendenziell eine human-centric perspective und die USA-Haltung ist tendenziell eine technology-centric perspective. – Hieraus erklären sich u.a. die diversen Bestrebungen der EU-Administration amerikanische AI-Konzerne wie google, meta/facebook, apple und amazon durch Gesetze und Strafen zu regulieren.  

Mit Hilfe dieser drei Basis-Haltungen bzw. -Perspektiven zur AI lässt sich auch die Grundhaltung in [1] beschreiben: Sie ist tendenziell eine human-centric perspective ergänzt um die technology-centric perspectice und die collective-intelligence perspective. Im Wissen um diese, aber insbesondere auch wegen der in den USA vorherrschenden technology-centric perspective, fordern die Autoren eine Regulation der AI, also die Einführung einer Governance für AI Systeme. Dies ist umso wichtiger, da auf der Basis der technology-centric perspective schon heute weltweit AI gestützte Waffensysteme entwickelt und genutzt werden.

Berühmte Vertreter der technology-centric perspective in den USA sind Peter Kurzweil [11] und die mit ihm verbundene Singularity University [12]. – Ein Kennzeichen dieser Haltung ist der Glaube, dass in absehbarer Zukunft, im Jahre 2045, die Fähigkeiten der AI diejenigen der Menschheit übersteigen werden.

In [9] wird betont, dass keine der obigen Basis-Haltungen richtiger oder besser ist, sondern dass der Kontext die Basis-Haltung bestimmen sollte. – Was leider nur selten geschieht. – In [13] wird die zentrale Bedeutung der Reflexion und der kritischen Auseinandersetzung mit dem sozialen Kontext, also den aktiven Werten, Glaubensätzen und Prinzipien für das Design, die Implementierung und die Operationalisierung von AI Systemen diskutiert. Falls die Metakompetenz für diese (Selbst-) Reflexion und kritische Auseinandersetzung nicht vorhanden ist, wird eine AI Ethik nicht angenommen und damit auch nicht verantwortungsvoll umgesetzt. In [14] habe ich die “Forderung” aufgestellt, dass Projekte mit hoher Komplexität, eine türkis/teal Kultur benötigen: “Ideally, this requires a mindset of all key stakeholders that also contains red, blue and orange value meme components (red means power orientation, blue means control and order orientation, and orange means entrepreneurship and linear-scientific-thinking orientation), but is mainly shaped by the transformational value meme components, namely green (compassion), yellow (nonlinear networked system thinking) and teal (holistic-transcendental orientation).” Alle Teammitglieder und insbesondere der Projektleiter sollten über die Metakompetenz verfügen, ihre eigenen Werte und Glaubenssätze im jeweiligen Kontext kritisch zu hinterfragen, um bewusst AI Systeme ethisch verantwortungsvoll zu designen, zu implementieren und zu operationalisieren.  

Meine persönlich präferierte Basis-Haltung ist die collective-intelligence perspective. Wenn ich AI Systeme erstelle liegt meine Haltung hingegen eher auf der technology-centric perspective und im Schreiben dieses Blog-Beitrages eher auf der human-centric perspective.    

Schaut man sich die Definitionen für AI der großen AI-Konzerne an, so lassen diese eine recht eindeutige AI-Haltung der jeweiligen Autoren erkennen:

IBM: “Artificial intelligence leverages computers and machines to mimic the problem-solving and decision-making capabilities of the human mind.” [15]: technology-centric perspective

Microsoft (deutsch): „Unter künstlicher Intelligenz (AI) verstehen wir Technologien, die menschliche Fähigkeiten im Sehen, Hören, Analysieren, Entscheiden und Handeln ergänzen und stärken.“ [16]: collective-intelligence perspective

Microsoft (amerikanisch): “Artificial intelligence (AI) is the capability of a computer to imitate intelligent human behavior. Through AI, machines can analyze images, comprehend speech, interact in natural ways, and make predictions using data.” [17]: technology-centric perspective. – Die Microsoft AI Internetseite [18] „AI for Good“ zeigt hingegen eine eher human-centric oder collective-intelligence perspective.

Google CEO: “At its heart, AI is computer programming that learns and adapts. It can’t solve every problem, but its potential to improve our lives is profound. At Google, we use AI to make products more useful—from email that’s spam-free and easier to compose, to a digital assistant you can speak to naturally, to photos that pop the fun stuff out for you to enjoy.” [19]: collective-intelligence perspective

Die Internetseite von google [20] und diejenige von meta/facebook [21] lassen eine Mischung aus technology-centric- und collective-intelligence-perspective erkennen.

Die OECD hat im Jahre 2019 ihr Dokument „Artificial Intelligence in Society“ vorgelegt, und definiert dort ihre human-centric perspective, die sie auch so nennt [22]: Hiernach müssen AI Systeme u.a. Menschenwürde und -rechte sowie die Demokratie gewährleisten, indem sie u.a. transparent, nachvollziehbar, vertrauenswürdig, sicher und steuerbar sind und bleiben. – Eine gestaltende Auseinandersetzung mit dem sozio-technischen System Mensch-Künstliche Intelligenz, im Sinne des Designs einer Governance, findet jedoch nicht statt.

Eine ähnliche Aussage ergibt sich für Deutschland: In [23] werden unter dem Titel „The making of AI Society: AI futures frames in German political and media discourses” die sogenannten „AI future frames“ für Deutschland untersucht. – AI future frames sind mentale Rahmen, in denen die AI Zukunft gesetzt wird. Das Ergebnis ist eher ernüchternd: „By mirroring the past in the future, alternative future visions are excluded, and past and current assumptions, beliefs, and biases are maintained. Despite the allegedly disruptive potential of emerging AI.” Hiernach denkt die deutsche Politik die neoliberale Politik der letzten Jahrzehnte unter dem Label „AI Made in Germany“ oder AI German einfach fort: „successful innovation = welfare generating future = political stability“. Die Lippenbekenntnisse der deutschen politischen Administration bis zur Wahl 2021 sind human-centric; im Tun überlassen sie die AI Governance dem Markt und eine AI Ethik explizit den deutschen Industrieunternehmen. – Eine entsprechende politische Governance, die den zentralen Aussagen in [1] Rechnung trägt, gibt es nicht. – Eine Einbettung in eine europäische AI Strategie fehlt völlig!

Die EU Kommission hat letztes Jahr in [24] einen Vorschlag für ein Regulationspapier erstellt, das in erster Linie als harmonisierende Referenz für die EU Administration dienen soll: Ein seitenstarkes Papier mit vielen Details; ich vermisse mal wieder ein Großes Bild, das zu einem Collective Mind in der EU (Administration) führen könnte. 

Wie könnten die Eckpfeiler eines Großen Bildes einer AI bzw. HCI Governance aussehen? Hier ein Vorschlag:

Rahmenparameter:

Landesspezifische AI Governance Systeme sind in eine europäische AI Governance eingebettet. – Die Strukturen der AI Governance sind auf allen europäischen Ebenen ähnlich. – Die (europäische) AI Governance folgt in ihrer Struktur einer Ziel-Hierachie: Vom Großen Bild zum Detail. Der transformative Charakter der AI Governance ist in die Governance einer ökologisch-ökonomischen Transformation (u.a. Nachhaltigkeit für Natur, Tier und Mensch, hin zu einer an sozialer Gerechtigkeit und Gleichheit orientierten Ökonomie, die Wachstum nicht als Allheilmittel verkauft) eingebettet

Kontrollparameter:

Die Kontrollparameter orientieren sich an den zentralen Aussagen aus [1]: Eine europäische AI Ethik und Gesetzgebung sorgt für eine Regulation der AI Freiheiten. Die AI Ethik und Gesetzgebung wird von der Politik gestaltet. Z.B. heißt dies, dass der Wert AI Transparenz politisch definiert wird und gesetzlich verankert wird.- Dies könnte zum Beispiel heißen, dass AI Systeme in Europa vor staatlichen Organen nach Bedarf offengelegt werden müssen.

Da AI Systeme unsere Welt transformieren, ist es notwendig dafür zu sorgen, dass die Schere zwischen AI-Wissenden und AI-Nichtwissenden nicht zu einer Verschärfung von Ungleichheit führt. Ein entsprechendes Bildungskonzept ist notwendig: AI gehört als Pflichtfach in die Schulen und AI gehört in die Curricula aller universitären Disziplinen.

Ordnungsparameter:             

Als Großes Bild für den Ordnungsparameter schlage ich vor „European Ecosystem for Hybrid Collective Intelligence“. Die Ausgestaltung dieses Großen Bildes heißt u.a. dass neben einer gemeinsamen europäischen AI Governance eine gemeinsame AI Infrastruktur aufgebaut wird. – Es werden Mechanismen bereitgestellt, die das Silo-Denken und -Handeln von Industrie und politischen Administrationen auflösen. U.a. wird eine „AI für Jedermann“ aufgebaut und die die obigen drei Sichten human-centric, technology-centric und collective intelligence integriert: Die sozio-technische HCI Integration wird also bewusst europäisch gestaltet.  

 

[1] Kissinger H A, Schmidt E, Huttenlocher D (2021) The Age of AI: And Our Human Future, kindle edition
[2] Dominik Dellermann, Adrian Calma, Nikolaus Lipusch, Thorsten Weber, Sascha Weigel, Philipp Ebel (2021) The future of human-AI collaboration: a taxonomy of design knowledge for hybrid intelligence systems, arXiv.org > cs > arXiv:2105.03354
[3] Dragos‑Cristian Vasilescu, Michael Filzmoser (2021) Machine invention systems: a (r)evolution of the invention process?, Journal AI & Society, January 2021
[4] Phanish Puranam (2021) Human–AI collaborative decision‑making as an organization design Problem, Journal of Organization Design (2021) 10:75–80
[5] Alex Wissner-Gross (2022) A new equation for intelligence, https://www.youtube.com/watch?v=auT-pA5_O_A, march 2020, zugegriffen am 07.02.2022
[6] Ron Schmelzer (2022) https://www.forbes.com/sites/cognitiveworld/2020/02/27/cant-define-ai-try-defining-intelligence/?sh=6f658a955279, Forbes Blog February 2020, zugegriffen am 07.02.2022
[7] Bernard Marr (2022) The Key Definitions Of Artificial Intelligence (AI) That Explain Its Importance, Forbes Blog February 2018, https://www.forbes.com/sites/bernardmarr/2018/02/14/the-key-definitions-of-artificial-intelligence-ai-that-explain-its-importance/?sh=219cbb1f4f5d , zugegriffen am 07.01.2022
[8] Wikipedia (2022) Artificial Intelligence, https://en.wikipedia.org/wiki/Artificial_intelligence, zugegriffen am 07.02.2022
[9] Peeters M M M, van Diggelen J, van den Bosch K, Bronhorst A, Neerinex M A, Schraagen J M, Raaijmakers S (2021) Hybrid Collective Intelligence in a Human-AI Society, in AI & Society Journal, March 2021
[10] Roberts H, Cowls J, Hine E, Mazzi E, Tsamados A, Taddeo M, Floridi L (2021) Achieving a ‘Good AI Society’: Coparing the Aims and Progress of the EU and the US, SSRN Journal, January 2021
[11] Kurzweil R (2022) https://www.kurzweilai.net/, zugegriffen am 07.02.2022
[12] Singularity University (2022) https://www.su.org/ , zugegriffen am 07.02.2022
[13] Krijger J (2021) Enter the metrics: critical theory and organizational operationalization of AI ethics, Journal AI & Society, September 2021
[14] Oswald A (2022) The Whole – More than the Sum of Its Parts! Self-Organization – The Universal Principle! in Ding R, Wagner R, Bodea CN (editors) Research on Project, Programme and Portfolio Management – Projects as an Arena for Self-Organizing, Lecture Notes in Management and Industrial Engineering, Springer Nature
[15] IBM (2022) Artificial Intelligence, https://www.ibm.com/cloud/learn/what-is-artificial-intelligence, zugegriffen am 07.02.2022
[16] Microsoft (2022) Künstliche Intelligenz, https://news.microsoft.com/de-at/microsoft-erklart-was-ist-kunstliche-intelligenz-definition-funktionen-von-ki/, zugegriffen am 07.02.2022
[17] Microsoft (2022) Artificial Intelligence Architecture, https://docs.microsoft.com/en-us/azure/architecture/data-guide/big-data/ai-overview, zugegriffen am 07.02.2022
[18] Microsoft (2022) AI for Good, https://www.microsoft.com/en-us/ai/ai-for-good, zugegriffen am 07.02.2022
[19] Sundar Pichai (2022) AI at Google: our principles, https://www.blog.google/technology/ai/ai-principles/, Blog of CEO google, june 2018, zugegriffen am 07.02.2022
[20] Google (2022) Google AI: Advancing AI for everyone, https://ai.google/, zugegriffen am 07.02.2022
[21] Meta AI (Facebook) (2022) Bringing the world closer together by advancing AI, https://ai.facebook.com/, zugegriffen am 07.02.2022
[22] OECD (2019) Artificial Intelligence in Society, Online Version, https://www.oecd-ilibrary.org/sites/eedfee77-en/index.html?itemId=/content/publication/eedfee77-en&_csp_=5c39a73676a331d76fa56f36ff0d4aca&itemIGO=oecd&itemContentType=book
[23] Köstler L, Ossewaarde R (2020) The making of AI Society: AI futures frames in German political and media discourses, in AI & Society Journal, February 2021, Springer Nature
[24] Europäische Kommission (2021) Proposal for a REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL LAYING DOWN HARMONISED RULES ON ARTIFICIAL INTELLIGENCE (ARTIFICIAL INTELLIGENCE ACT) AND AMENDING CERTAIN UNION LEGISLATIVE ACTS, https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:52021PC0206, zugegriffen am 07.02.2022

AI & M 4.0: Zur Erweiterung unserer Intelligenz und Realität durch Machine Learning (ML) und Artificial Intelligence (AI) im Management 4.0

Der ehemalige amerikanische Außenminister Kissinger sowie der ehemalige Google CEO Schmidt und der MIT Professor Huttenlocher haben zusammen vor ein paar Tagen ein bemerkenswertes Buch zu unserer Zukunft im Zeitalter der künstlichen Intelligenz herausgebracht. – Ich nenne wesentliche Aussagen dieses Buches [1]:

  • Machine Learning (ML) und Artificial Intelligence (AI) basieren auf völlig anderen Prinzipien als „klassische“ Software: Im Rahmen vorgegebener Selbstorganisations-Parameter (und Daten) organisiert sich eine AI selbst. – Sie bildet durch Training Modelle zu den eingegebenen Daten, also der ausgewählten Realität, ab. – Diese Modelle sind nicht perfekt, sie liefern Wahrscheinlichkeitsaussagen. – Und damit haftet diesen Modellen unmittelbar Unsicherheit an! – Gar nicht so unähnlich unserer Intelligenz!
  • Systeme künstlicher Intelligenz erkennen schon heute Muster in unsrer Realität, die unserer Intelligenz (bisher) verschlossen waren. – AI bildet erfolgreich Schachstrategien aus, die bisher kein Mensch verwendet hat oder findet wirksame Medikamente, die bisher unentdeckt geblieben sind, oder hilft Prinzipien der Physik und Mathematik zu entdecken usw. 
  • AI wird unsere Sicht auf die Realität wesentlich verändern, nicht nur quantitativ, sondern vor allem auch qualitativ! – Und dies in zweierlei Hinsicht: Die Entwicklung von AI sorgt für die Integration verschiedener Disziplinen wie Psychologie, Sozialwissenschaften, Naturwissenschaften, Informatik, Mathematik sowie Philosophie und führt in den jeweiligen Disziplinen zu neuen Erkenntnissen und Anwendungen.
  • Gesellschaftliche Systeme werden sich substanziell unterschiedlich entwickeln, je nachdem, ob in welchem Maße und in welcher Qualität ML/AI eingesetzt wird. – Dies wird sich zum einen auf globaler Ebene zeigen, und zum anderen wird es auch eine neue „Schichtung“ der Gesellschaft(en) entlang der individuellen ML/AI Kompetenzen hervorrufen. – Derzeit gibt es nur zwei relevante ML/AI Ecosysteme: USA und China. – Und diese Ecosysteme formen mit ihren ML/AI Systemen unsere (europäische) Zukunft!

Falls jemand diese Aussagen anzweifelt, so möge er sich die Internetseite von DeepMind [2] oder der AI community DeepAI [3] ansehen – die Zweifel dürften sehr schnell verschwinden.

Seit ein paar Monaten konfiguriere bzw. programmiere ich ML/AI Systeme, also Physical Technologies. – Ich tue dies auf der Basis des amerikanischen ML/AI Ecosystems, insbesondere von Google’s Colab [4], Python [5] und Jupyter Notebooks [6]: Ich lote aus, inwieweit diese Physical Technologies helfen könnten, die Social Technology Management 4.0 gemäß den obigen Aussagen zukunftsfähig zu machen. – Das heißt, die Management 4.0 Intelligenz durch ML/AI quantitativ und qualitativ zu erweitern.

Im Tun wird einem sehr schnell bewusst, dass das europäische ML/AI Know-How ganz wesentlich vom amerikanischen ML/AI Ecosystem dominiert wird. – Das amerikanische ML/AI Ecosysteme von Google, Facebook/Meta Platforms, Microsoft und Co. ist überwältigend! – Es gibt eine Vielzahl an öffentlich zugänglichen Plattformen mit einer enormen Anzahl von vortrainierten ML/AI Modellen, unzähligen Tutorials und Code-Beispielen. – Selbst die Nutzung generativer Natural Language Processing (NLP) Systeme der neuesten Generation oder sogar die Anbindung an Quantencomputing ist prinzipiell möglich.

Das amerikanische ML/AI Ecosystem ermöglicht auch Personen wie mir, deren ML/AI Know-how Lichtjahre vom google Know-how entfernt ist, in überschaubaren Schritten in die ML/AI-Welt einzusteigen. Google, Meta Platforms, Microsoft und Co. haben damit einen gesellschaftlichen Innovations-Feedback Mechanismus angestoßen, der der (amerikanischen) Gesellschaft – zumindest einem gewissen Teil davon – einen enormen Innovationsschub gibt: Das ML/AI Ecosystem trägt zu immer schnelleren und qualitativ neuartigen ML/AI Entwicklungen bei, teilweise sogar zu ML/AI Technologie-Revolutionen – man siehe [2] und [3].

Auch wenn nicht wenige Europäer zum amerikanischen ML/AI Ecosystem beitragen, so wurde mir im Tun „schmerzlich“ bewusst, dass wir Europäer auf der Ebene der gesellschaftlichen ML/AI Ecosysteme keine Rolle spielen. – Auch wenn es „kleine“ lokale ML/AI Ecosysteme wie das Tübingen AI Center gibt [6].
Mir sind keine öffentlich zugänglichen europäischen ML/AI Plattformen bekannt. Gerade im Natural Language Processing (NLP) Bereich gibt es nur wenige vortrainierte Modell für europäische Sprachen oder die deutsche Sprache. (Nahezu) alle Tutorials sind in Code und Daten auf den Englisch-sprachigen Bereich ausgerichtet…Dies dürfte nicht nur mir sehr viel mühsame Transferarbeit bescheren!

Man mag das amerikanische ML/AI Ecosystem durchaus auch kritisch sehen, jedoch kann man Google und Co. mit ihrer ML/AI open source Philosophie nicht absprechen, dass Sie einen erheblichen Beitrag für die (ML/AI-) Entwicklung der amerikanischen und auch westlichen Gesellschaft leisten. Schaue ich auf die deutsche Unternehmenslandschaft, so zahlen unsere Unternehmen nach meinem Wissen auf kein gesellschaftliches ML/AI Ecosystem ein. – Unsere deutsche (unternehmerische) Gesellschaft wird nach wie vor von Silo-Denken, Silo-Geschäftsmodellen und Silo-Handeln bestimmt. Das heißt auch, dass gemäß [1] die Entwicklung der europäischen Gesellschaft über kurz oder lang einen Mangel an erweiterter Intelligenz und erweiterter Realität spüren wird, falls dieser Mangel nicht schon jetzt vorhanden ist.

Die obigen Aussagen aus [1] entsprechen meiner Erfahrung und Wahrnehmung und sind ein Motiv, sich um die Verbindung von AI und Management 4.0 (AI & M 4.0) zu kümmern: AI kann dem Projektleiter sowie dem Team assistieren und, was vielleicht noch viel wichtiger ist, mentale Feedback Mechanismen anstoßen, die die kognitive menschliche Projekt- und Management-Intelligenz erweitern. Damit geht einher, dass das menschliche Bewusstsein sich erweitert und mentale wie gesellschaftliche Transformationen angestoßen und begleitet werden. – Die wahrgenommene Realität insbesondere in komplexen Projekten wird sich nach meiner Einschätzung durch ML/AI erheblich erweitern.

Ich liste im Folgenden AI & M 4.0 Anwendungskategorien, die nach meinem aktuellem Wissensstand für das (Projekt) Management von Bedeutung sein werden.- Ich kennzeichne die Kategorien durch AI/ML und eine fortlaufende Nummer. – Man siehe hierzu auch die phasenorientierte Zuordnung von PM Aktivitäten und AI/ML Techniken in [8].

AI/ML 1 – Numerische Feature-Multilabel (supervised) AI: Ein Sachverhalt wird über numerische Datenkategorien (Features) beschrieben und Anwendungstypen oder Klassen (man spricht von Labels) zugeordnet. Zum Beispiel nimmt ein AI System eine Aufwands- oder Kostenschätzung vor. Hierzu werden die Aufgaben gemäß bestimmter numerischer Features beschrieben und einer Aufwandsklasse, also einem Label, zugeordnet. Supervised bedeutet hier, dass die AI mit einer Feature-Label Zuordnung trainiert wird, die durch Menschen vorher vorgenommen wurde. Hierbei ist es meines Erachtens jedoch nicht notwendig, zuerst jahrelang solche Zuordnungen, also Daten zu sammeln. Die AI könnte vielmehr in laufende Aufwandsschätzungen gemäß Delphi oder Planning Poker eingebracht werden, im Wissen, dass die AI sich wahrscheinlich langsam aufbaut.    

AI/ML 2 – Text-Multilabel (supervised) Natural Language Processing AI: Ein Sachverhalt wird über Text bzw. Sprache beschrieben und Labels zugeordnet. Auch eine Aufwandsschätzung könnte auf diese Weise durch AI vorgenommen werden.- Die zu schätzenden Aufgaben liegen als Textbeschreibungen vor und für das Training werden durch Menschen Label-Zuordnungen vorgenommen. Text und Label werden im AI-Training verarbeitet. – Die AI ist also in der Lage natürliche Sprache (Natural Language Processing (NLP)) zu verarbeiten. Ein anderes Bespiel ist die Analyse von Verhalten, beschrieben in Textform und die Zuordnung zu Persönlichkeitslabels (Temperament, Werten, Grundannahmen, Glaubenssätzen, Prinzipien). – Die nachträgliche Analyse von Verhalten durch niedergeschriebenen Text ist relativ „einfach“.  – Eine direkte Analyse der Kommunikation z.B. während einer Teamsitzung ist jedoch wesentlich anspruchsvoller und entzieht sich derzeit (noch 😉) meinem Kenntnisstand. – Selbstverständlich kann auf dieser Basis auch eine organisationale Kulturanalyse vorgenommen werden, indem die Kommunikation (Gesprochenes, Dokumente, eMail, Chat) im Team oder in der Organisation ausgewertet wird.  

AI/ML 3 – Graph Neural Networks bzw. Graphen-Multilabel (supervised) AI: Sehr viele Sachverhalte in Natur, Sozialem und Technik lassen sich über Graphen bzw. Netzwerke beschreiben [9, 10]. Soziale Systeme bzw. Organisationen lassen sich gut über Social Networks darstellen. Der Projektstrukturplan bzw. der Projektplan sind spezielle Graphen. Die Zielhierarchie ist eine weiterer Graph. Zum Beispiel lassen sich aus der Kommunikation der Stakeholder Social Networks ableiten und diese Social Networks oder Social Networks Bausteine werden mit Labels versehen und dienen dem Training von AI/ML. Ein anderes Beispiel ist die Extraktion der Zielhierarchie aus einer Teamkommunikation und die anschließende „Überprüfung der Einhaltung“ der Zielhierarchie in der Stakeholderkommunikation. Oder, das Social Network eines Teams wird Performance Labels (z.B. Hochleistung, mittlere Leistung, dysfunktionale Leistung) zugeordnet.  

AI/ML 4 – Team-Sprachanalyse (unsupervised) AI: Die Sprache in Teams oder Stakeholdergruppen wird auf Gemeinsamkeiten untersucht. So lässt sich u.a. aus der Wortwahl von Teammitgliedern u.a. mittels der Bag of Word und word embedding Technologien auf deren „mentale Verwandschaft“ oder das Collective Mind schließen.

AI/ML 5 – Generative NLP (unsupervised) AI: Mittels generativer NLP AI Systeme [11, 12] lassen sich u.a. Vertragsdokumente bzw. Claim-Dokumente mittels weniger von Menschen eingegebener zentraler Prinzipien generieren. Diese Systeme können auch dazu benutzt werden, Abweichungen (also Vertrags- und Claimrisiken) zu identifizieren.

AI/ML 6 – Clustering (unsupervised) AI: Die AI clustered numerische oder Textdaten. Diese Cluster zeichnen sich durch charakteristische Cluster Eigenschaften aus und erlauben damit das Erkennen von Mustern in den Daten. Auf diese Weise können zum Beispiel Projekte, Aufgaben oder auch Stakeholder geclustert werden. – Einen ersten Eindruck von der Fähigkeit Neuronaler  Netzwerke zu clustern, bietet die „Spielumgebung“ von Tensorflow [13].

Diese sechs Kategorien lassen sich auch kombinieren, sei es, um ergänzende Informationen zu erhalten oder eine sogenannte AI/ML Verarbeitungspipeline aufzubauen.

Ich erwarte, dass mit gewonnener Erfahrung diese sechs Kategorien detailliert werden und auch weitere Kategorien hinzukommen.

Ich verwende diese sechs AI/ML Kategorien, um AI & M 4.0 zu beschreiben: Ich tue dies unter Verwendung der IPMA ICB 4.0 Kompetenzen [14] bzw. der Kompetenzen des Handbuches Kompetenzbasiertes Projektmanagement (PM4) der GPM [15]. Die nachfolgende Tabelle listet AI & M 4.0. Die Tabelle ist sicherlich nicht vollständig. – Sie gibt den aktuellen Stand meiner Überlegungen wieder; sie dürfte sich also noch ändern.

Die Tabelle zeigt, dass schon heute mit entsprechendem Know-how die (Projekt) Management Intelligenz und Realität deutlich erweitert werden kann. – Mit einem AI Know-How, das im amerikanischen ML/AI Ecosystem abrufbar ist.

Die kursive Schrift in der Tabelle zeigt an, dass in diesen Fällen eine Bearbeitung durch die GPM Fachgruppe Agile Management begonnen wurde.

Perspective – KontextkompetenzenAI & M 4.0: Erweiterte Management 4.0 Intelligenz und Realität mittels ML/AI
Strategie 
Governance, Strukturen und Prozesse 
Compliance, Standards und RegularienAI/ML 5: Ermittlung von Compliance und Risiken durch den Abgleich von Projektartefakten und Compliance-Dokumenten sowie Standards und Normen
Macht und Interessen 
Kultur und WerteAI/ML 2: Ermittlung des organisationalen Mindsets (Kultur) durch vortrainierte Neuronale Netzwerke (NN): transkribierte Sprache und Texte werden mittels eines Transformermodells wie BERT [16,17] einer Text-MultiLabel Analyse unterzogen. – BERT ist eines der wenigen Modelle, das auch in einer deutschen Sprachversion verfügbar ist.   In einem zweiten Schritt kann diese Information dazu benutzt werden, um die Heterogenität der Kultur in einer Organisation zu ermitteln. In dem vorhergehenden Blog-Beitrag habe ich dies als „Spinglass-Organisation“ bezeichnet.     
People – Persönliche und soziale Kompetenzen 
Selbstreflexion und SelbstmanagementAI/ML 2: Die Selbstreflexion und das Selbstmanagement wird durch einen Feedback Mechanismus zwischen AI und Projektmanager oder Teammitglied angestoßen. Die AI erweitert die Metakompetenz des PM und der Teammitgliedern, indem den Verhaltensweisen durch die AI Persönlichkeitsdimensionen (Temperament, Motive, Werte, Glaubenssätze) zugeordnet werden.
Persönliche Integrität und Verlässlichkeit 
Persönliche KommunikationAI/ML 2: Die Realität der Kommunikation verändert sich auf der Basis der veränderten Selbstreflexion. Zudem liefert die AI Informationen zu den Persönlichkeitsdimensionen aller kommunizierenden Teammitglieder.
Beziehungen und Engagement 
FührungAI/ML 2: Die Führungs-Metakompetenz wird erheblich erweitert, da Selbstreflexion und Kommunikation deutlich verbessert werden. – Die Decision Intelligence wird deutlich erweitert.   AI/ML 4: Die Team-Sprachanalyse ermittelt Gemeinsamkeiten und hilft Dysfunktionalitäten aufzudecken.   AI/ML 3: Social Networks werden mittels GNN (Graph Neural Networks) analysiert und gelabelt. Dies kann auf Teamebene und auf der Ebene aller Stakeholder erfolgen.
TeamarbeitAI/ML 4: Die Stärke des Collective Mind wird durch einen „Statthalter“ also eine proxy Collective Mind (proxyCM) abgebildet: CM ~ proxyCM. Als proxyCM können verschiedene Modelle dienen: Transkribierte Sprache von Teammitgliedern werden mittels sklearn [18] (Native Bayes Classification) den Teammitgliedern zugeordnet. Desto eindeutiger die Zuordnung ist, desto geringer ist das CM, oder anders ausgedrückt, falls ein Text mehreren Teammitglieder zugeordnet werden kann, so besteht ein „inhaltlicher Überlapp“. – Der proxyCM ist größer.   Des Weiteren können Redefrequenz und Redelänge als weitere Indikatoren für den proxyCM verwendet werden.   Mittels einer Bag of Word oder Word Vector Embedding Analyse [18, 19, 20, 21] wird die Wortwahl der Teammitglieder analysiert. Unterschiedliche Wortwahlen unterschiedlicher Teammitglieder zeigen ein schwaches proxyCM an, oder umgekehrt lassen ähnliche Begriffsschwerpunkte auf ein starkes proxyCM schliessen.    
Konflikte und KrisenAI/ML 2, 3, 4: Diese AI Erweiterungen der PM Intelligenz bzw. Metakompetenz sind auch gerade in Konflikten und Krisen von enormer Bedeutung
Vielseitigkeit 
VerhandlungenAI/ML 2, 3, 4: Diese AI Erweiterungen der PM Intelligenz bzw. Metakompetenz sind auch gerade in Verhandlungen von enormer Bedeutung. AI/ML 5: Zusätzlich ist es hilfreich Vertrags- und Claim-Dokumente einer AI Überprüfung zu unterziehen.
Ergebnisorientierung 
Practice – Technische Kompetenzen 
ProjektdesignAI/ML 6: Die AI ermittelt Komplexitätsklassen auf der Basis von numerischen und/oder textuellen Daten. Die Komplexitätsklassen sind die Basis des Projektdesigns
Anforderungen und Ziele 
Leistungsumfang und Lieferobjekte 
Ablauf und Termine 
Organisation, Information und Dokumentation 
Qualität 
Kosten und FinanzierungAI/ML 1, 2: Die Ermittlung von Aufwänden und Kosten gehört zu den „einfachen“ AI/ML Techniken. Lediglich die Beschaffung von Trainingsdaten ist vermutlich schwierig, da archivierte Projektdaten selten vorliegen.
Ressourcen 
Beschaffung 
Planung und SteuerungAI/ML 1: siehe Kosten und Finanzierung
Chancen und Risiken 
StakeholderAI/ML 2, 3, 4: Diese AI Erweiterungen der PM Intelligenz bzw. Metakompetenz sind für das Stakeholdermanagement von enormer Bedeutung
Change und TransformationAI/ML 2, 3, 4, 5: Hier können nahezu alle AI Techniken zum Einsatz kommen, um eine valide Entscheidungsbasis für Interventionen zu haben.
Tabelle: AI & M 4.0 unter Verwendung der ICB 4.0 / PM4 Kompetenzen

Die GPM Fachgruppe Agile Management sucht Mitglieder, die bereit sind, in die Untiefen 😉 der AI Erstellung, des Trainingsdaten Sammelns oder sogar der Anwendung im eigenen Unternehmen einzusteigen! – Wir freuen uns über eine Kontaktaufnahme unter agile-management@gpm-ipma.de!

[1] Kissinger HA, Schmidt E, Huttenlocher D (2021) The Age of AI: And Our Human Future, kindle edition
[2] DeepMind (2021) deepmind.com, zugegriffen am 02.12.2021
[3] DeepAI (2021) deepai.org, zugegriffen am 02.12.2021
[4] Colab (2021) https://colab.research.google.com/
[5] Python (2021) https://www.python.org/
[6] Jupyter Notebooks (2021) https://jupyter.org/, zugegriffen am 02.12.2021
[7] Tübingen AI Center (2021) tuebingen.ai, zugegriffen am 02.12.2021
[8] Nuhn H (2021) Organizing for temporality and supporting AI systems – a framework for applied AI and organization research, Lecture Notes in Informatics, GI e.V
[9] Veličković P (2021) Introduction to Graph Neural Networks, https://www.youtube.com/watch?v=8owQBFAHw7E, zugegriffen am 02.12.2021, man siehe auch petar-v.com
[10] Spektral (2021) https://graphneural.network/, zugegriffen am 02.12.2021
[11] GPT-3 (2021) https://openai.com/blog/openai-api/, zugegriffen am 09.12.2021
[12] Gopher (2021) https://deepmind.com/blog/article/language-modelling-at-scale,
[13] Neuronales Netzwerk „zum Spielen“ (2021) https://playground.tensorflow.org, zugegriffen am 02.12.2021
[14] GPM (2017) Individual Competence Baseline für Projektmanagement, IPMA, Version 4.0 / Deutsche Fassung
[15] GPM (2019) Kompetenzbasiertes Projektmanagement (PM4), Handbuch für Praxis und Weiterbildung im Projektmanagement
[16] Tensorflow (2021) google Entwicklungsplattform, https://www.tensorflow.org, zugegriffen am 02.12.2021
[17] BERT (2021) NLP Transformer Model BERT, https://huggingface.co/models, zugegriffen am 02.12.2021
[18] Scikit-learn (2021) https://scikit-learn.org/, zugegriffen am 02.12.2021
[19] Gensim-word2vec (2021) https://www.kaggle.com/pierremegret/gensim-word2vec-tutorial, zugegriffen am 02.12.2021
[20] Word-Vector-Visualisation (2021) https://www.kaggle.com/jeffd23/visualizing-word-vectors-with-t-sne/notebook, zugegriffen am 02.12.2021
[21] Spacy (2021) https://spacy.io/models/de, zugegriffen am 02.12.2021