AI & QC & M 4.0: Quantum Cognition für das Team-Management oder von der Macht der Mathematik

(Die in diesem Blog-Beitrag enthaltene recht komplexe Mathematik der Quantenmechanik sowie die dazugehörigen Programme wurden mit der AI-Assistenz von ChatGPT4o1-preview erhalten. ChatGPT4o wurde für die Überprüfung des Blog-Beitrages verwendet. Der enthaltene Podcast wurde von der Google AI noteBookLM erstellt.)

Der nachfolgender Podcast fasst den Blog-Beitrag in englischer Sprache zusammen und wurde von der Google AI notebookLM erzeugt:

Abbildung 0:  Ein Bild, erzeugt von ChatGPT/DALL.E, das den Blog-Beitrag visuell unterstützt und im Stil von van Gogh gestaltet ist. Es zeigt Teammitglieder in einer dynamischen Interaktion, die die Konzepte der Quantum Cognition durch wellenartige Verbindungen symbolisiert.

Dieser Blog-Beitrag richtet sich an Leser mit einem Hintergrund in Management sowie an jene, die Interesse an quantenmechanischen Konzepten im Bereich der Kognition und Teamdynamik haben: Keine Angst vor Mathematik ist hilfreich!

Bei den Recherchen zu dem vorherigen Quantum Computing Blog-Beitrag bin ich auf den Begriff ‚Quantum Cognition‘ gestoßen [1]. Sofort wenn man den Wikipedia Artikel oder die wissenschaftlichen Artikel [2],[3] liest, wird man darauf hingewiesen, dass Quantum Cognition nichts mit Quantum Mind [4] oder der Idee, dass Bewusstsein durch Quanteneffekte hervorgerufen wird, zu tun hat. – Wenngleich das letzte Wort hierzu sicherlich noch nicht gesprochen ist.

Bei dem Thema Quantum Cogition geht es um die verblüffende Feststellung, dass kognitive Verzerrungen wie u.a. Tversky und Kahneman sie beschrieben haben [5], schlecht oder überhaupt nicht durch die klassische Wahrscheinlichkeitstheorie (Classical Probability Theory) beschrieben werden, aber sehr wohl durch die Quanten Wahrscheinlichkeitstheorie (Quantum Probability Theorie), wie sie im mathematischen Formalismus der Quantenmechanik enthalten ist. Das ist schon irgendwie faszinierend…und zeigt meines Erachtens die ungeheure Macht der Mathematik: Denn plötzlich wird ein mathematischer Formalismus, der in einem Gebiet entwickelt wurde, auf einem völlig anderen Gebiet angewendet.

Ich beschäftige mich in diesem Blog-Beitrag zuerst mit den Grundlagen von Quantum Cognition. Anschließend wende ich diese Grundlagen auf die Teamkommunikation an. Bei der Konzeption des Collective Mind vor ca. zwei Jahrzehnten kam die Idee auf, den Collective Mind als sogenannten verschränkten Zustand der mentalen Modelle der Teammitglieder zu verstehen. Ich werde zeigen, dass mit dem Formalismus der Quantum Cognition genau dies möglich ist. Damit ergänze ich die in den vorhergehenden Blog-Beiträgen beschriebenen klassischen Modelle des Collective Mind. – In zukünftigen Blog-Beitragen besteht Raum für eine Integration beider Ansätze😉.

Zuerst zu den Grundlagen von Quantum Cognition. Quantum Cognition benutzt drei Schlüsselelemente der Quantenmechanik:

  • Superposition (Überlagerung): Ein mentaler Zustand kann als Kombination mehrerer möglicher Zustände betrachtet werden. Damit eröffnet sich die Möglichkeit, Ambiguitäten im menschlichen Verhalten zu modellieren, sowie Unentschlossenheit in Entscheidungsprozessen zu beschreiben.
  • Nicht-Kommutativität (Interferenz): Wie in der Quantenphysik können mentale Zustände sich gegenseitig beeinflussen, was zu Verstärkungs- oder Abschwächungseffekten führt und einige nichtlineare Entscheidungsprozesse erklärt. Psychologische Beispiele hierfür sind das Priming und die verschiedenen mentalen Verzerrungen, u.a. auch der Bias.
  • Verschränkung (Entanglement): Unterschiedliche kognitive Variablen können stark miteinander verbunden sein, so dass der Zustand einer Variablen unmittelbar den Zustand einer anderen beeinflusst. Das Hebb’sche Gesetz beschreibt diesen Effekt: Psychologische Beispiele hierfür sind Gefühle, die unmittelbar die Wahrnehmung beeinflussen.

Ich habe diese drei Schlüsselelemente in den Abbildungen 1-3 skizziert. Die in diesen Abbildungen enthaltenen mathematischen Ausdrücke der Quantenmechanik sind meines Erachtens nicht wichtig für ein Verstehen der wesentlichen Aussagen dieses Blog-Beitrages. Sie mögen aber dem ein oder anderen vielleicht beim besseren Verständnis helfen.

Ich erläutere im Folgenden die in Abbildung 2 enthaltenen Aussagen zum Schlüsselelement der Nicht-Kommutativität (Interferenz) etwas genauer, u.a. deswegen weil dort der Begriff des Projektionsoperators eingeführt wird, der für die Quantenmechanik und die Quanten Cognition von großer Bedeutung ist. Für die beiden anderen Schlüsselelemente verweise ich auf die Abbildungen 1-3.

Wenn wir an eine Person oder an ein Ding denken, so rufen wir ein mentales Konzept von dieser Person oder diesem Ding ab. Nehmen wir zwei Personen aus der amerikanischen Politik: Clinton und Gore. Jeder von uns hat wahrscheinlich ein mehr oder weniger ausgeprägtes Konzept bzw. eine mentale Repräsentation oder eine Idee von Clinton und Gore. Dieses Konzept wird u.a. durch Interaktion mit der Umwelt aktiviert. In unserem Clinton-Gore-Beispiel sind Konzepte wie ‚Clinton‘ und ‚Gore‘ die grundlegenden Einheiten, die wir modellieren möchten: Nehmen wir an, jemand würde uns die Frage stellen, ob wir Clinton vertrauenswürdig finden und anschließend die Frage stellen, ob wir Gore vertrauenswürdig finden. Psychologische Experimente haben gezeigt, dass die Wahrscheinlichkeit, beide Fragen mit Ja zu beantworten auch von der Reihenfolge der Fragen abhängt [3]. D.h. die Fragen rufen Konzepte auf und die Konzepte beeinflussen sich gegenseitig, aber nicht-kommutativ. Nicht-kommutativ bedeutet, dass es auf die Reihenfolge der Fragestellung ankommt. – Ein sehr erstaunliches Phänomen. In der Welt der Quanten kennt man entsprechende Phänomene: Die Reihenfolge von Messungen hat Einfluss auf die Ergebnisse der Messungen.

In der Quantenmechanik verwendet man sogenannte Projektionsoperatoren, die eine Messung bzw. Messreihenfolge repräsentieren. Mit einem Projektionsoperator projiziert man den Ausgangszustand auf den gemessenen Zustand. Damit kann man Wahrscheinlichkeitsaussagen treffen, wie wahrscheinlich es ist, dass der Ausgangszustand in den gemessenen Zustand übergeht.

Entsprechend werden in der Quantum Cognition kognitive Projektionsoperatoren zur Modellierung der Aktivierung eines kognitiven Konzepts in einer Person benutzt. – Es findet sozusagen eine Messung statt.

Nehmen wir an, dass bei der Frage nach Clinton bei einer befragten Person eine gewisse Ambivalenz (vertrauenswürdig, nicht-vertrauenswürdig) bezüglich der Antwort vorhanden ist. Für Gore nehmen wir eine andere Ambivalenz an. Wir nehmen auch an, dass bevor die Fragen gestellt werden, es noch keine Manifestationen von Präferenzen gibt. – Es gibt zum Beispiel keinen Bias durch eine gerade stattgefundene Diskussion zu diesem Thema. Die Projektionsoperatoren konstruieren wir als ambivalente Mischung (Superposition) aus einem vertrauenswürdigen und einem nicht-vertrauenswürdigen Basiskonzept. Hierbei kann es durchaus sein, dass eine befragte Person Clinton in dieser ambivalenten Mischung für vertrauenswürdiger als nicht-vertrauenswürdig hält. Bevor die Frage gestellt wird, ist dies jedoch nicht sichtbar, die innere Haltung ist unentschieden. Entsprechendes gilt natürlich für eine andere ambivalente Mischung bei Gore.

In der Quantenmechanik bezeichnet man die Basiskonzepte als Vektoren im sogenannten Hilbertraum. Der Hilbertraum ist ein spezieller mathematischer Raum, in dem die Vektoren quantenmechanischen Operationen unterliegen. Die Projektionsoperatoren sind solche Operationen und werden als Tensoren (haben das Aussehen von Matrizen) beschrieben, die auf diese Vektoren wirken. – Tensoren sind auch die zentralen Operationen in klassischen AI-Systemen. – Im Quanten Computing implementieren die Qubits die Vektoren und die Wechselwirkung der Vektoren entsprechen den Tensoren.

Wendet man den Formalismus der Quantenmechanik an, so kann man zeigen, dass nicht-kommutative Projektionsoperatoren, angewendet auf ambivalente innere Haltungen, eine Interferenz in den Antworten erzeugen. Die Basiskonzepte ‚Clinton‘ und ‚Gore‘ interferieren wie Wellen in der Physik: U.a. interferiert das vertrauenswürdige Basiskonzept mit dem nicht-vertrauenswürdigen Basiskonzept. Dies führt auch dazu, dass die Reihenfolge der Fragen entscheidend ist, da in Abhängigkeit der Reihenfolge unterschiedliche Interferenzen auftreten. Dies bedeutet, dass die gemeinsame Wahrscheinlichkeit Clinton zuerst als vertrauenswürdig einzustufen und anschließend Core, verschieden ist von der gemeinsamen Wahrscheinlichkeit Core zuerst als vertrauenswürdig einzustufen und anschließend Clinton. – Magisch…jedoch genau solche Effekt werden tatsächlich gemessen:

Wird zuerst nach Clinton als vertrauenswürdig gefragt und dann nach Gore, ergibt sich im statistischen Mittel, dass 50% der Befragten Clinton für vertrauenswürdig halten, und 68% Gore. Stellt man die Reihenfolge um, so geben 60% Gore als vertrauenswürdig an und 57% Clinton [3]. Es entsteht also eine Diskrepanz von ca. 7-8 %, hervorgerufen durch die Reihenfolge. Mit Hilfe der Formeln in Abbildung 2 zu den Wahrscheinlichkeiten lassen sich die Wahrscheinlichkeiten P Clinton dann Gore = 0,340 und P Gore dann Clinton = 0,342 berechnen. Die gemessenen Wahrscheinlichkeiten sind klassische statistische Wahrscheinlichkeiten, enthalten also Aussagen zu einer mittleren mentalen Ambivalenz aller befragten Personen. Berücksichtigt man dies, so kann man mit Hilfe des quantenmechanischen Formalismus Aussagen über die mittlere Ambiguität und Interferenz der mentalen Konzepte treffen:

In der Sequenz ‚Clinton dann Gore‘ zeigen die Berechnungen, dass weniger Ambiguität bezüglich Gore vorliegt, wenn zuerst nach Clinton gefragt wird. Dies deutet darauf hin, dass die mentale Repräsentation von Gore klarer oder positiver ist, wenn sie durch die vorherige Frage nach Clinton beeinflusst wird.

In der Sequenz ‚Gore dann Clinton‘ zeigen die Berechnungen, dass die Ambiguität bezüglich Clinton höher ist, wenn Gore zuerst gefragt wird. Dies deutet daraufhin, dass die mentale Repräsentation von Clinton stärker vom Kontext und vorherigen Informationen abhängt.

Abbildung 1: Superposition von mentalen Basiskonzepten

Abbildung 2: Nicht-Kommutativität und Interferenz von Basiskonzepten

Abbildung 3: Verschränkung von Basiskonzepten

Nach dieser kleinen Einführung in die Schlüsselelemente der Quantum Cognition, wende ich mich dem deutlich komplexeren Thema der Team-Kommunikation bzw. der Collective Mind Modellierung eines Teams zu.

Ich wollte hier ursprünglich ein Beispiel mit drei Teammitgliedern und den Big Five Persönlichkeitsmerkmalen, die einen Hilbertraum aufspannen, skizzieren. Jedoch haben die ersten Tests mit einem dazugehörigen Simulations-Programm auf einem klassischen Computer ergeben, dass dieses Programm schon nicht mehr auf meinem Laptop mit 16 GB Hauptspeicher lauffähig ist. Der Grund liegt darin, dass ein Hilbertraum mit 32768 Dimensionen aufgespannt wird. Die Dimension 32768 = 2 hoch (3*5), ergibt sich aus 3 Teammitglieder mit jeweils 5 Big Five Dimensionen. Jede Big Five Dimension wird durch einen Zustand 1 (hohe Ausprägung) und 0 (niedrige Ausprägung) repräsentiert. Es werden also für die Beschreibung der Wechselwirkung der Personen Tensoren (Matrizen) benötig, die eine Größe 32768*32768 haben.  

Statt dessen skizziere ich hier ein Beispiel aus 3 Teammitgliedern und lediglich 2 Big Five Dimensionen, nämlich Offenheit und Gewissenhaftigkeit. Damit wird ein Hilbertraum von 64 Dimensionen aufgespannt. Die Berechnungen hierzu liegen im Sekundenbereich.

Die drei Teammitglieder nenne ich Alice, Bob und Charlie. Diese Namen sind Klassiker in jeder Literatur über Quantenmechanik.

Ich wähle als Start für meine Berechnungen folgende Big Five Dimensionen:

 OffenheitGewissenhaftigkeit
Alicehochunbestimmt
Bobunbestimmthoch
Charlieunbestimmtniedrig
Tabelle 1: Ausgangszustände der Big Five Dimensionen der Teammitglieder Alice, Bob und Charlie

Ein Zustand, der als hoch bezeichnet wird, startet mit einer Qubit ‚1‘. Ein Zustand, der als niedrig bezeichnet wird, startet mit einer Qubit ‚0‘ und ein unbestimmter Zustand wird als Superposition der Zustände hoch und niedrig modelliert. Abbildung 4 enthält diese Aussagen in einer etwas formalisierten Form.

Abbildung 4: Anfangszustände und Interaktionsoperator im Teammodell

Da wir 2 Big Five Dimensionen für 3 Teammitglieder haben, benötigen wir 6 Qubits. Wir führen keine Berechnung auf einem Quantencomputer durch, sondern arbeiten mit einer Quantensimulation, also mit einer quantenmechanischen Berechnung, durchgeführt auf einem klassischen Computer, meinem Laptop.

Diese Berechnung soll folgende Fragenstellungen untersuchen:

Wie hoch ist die Wahrscheinlichkeit, dass alle Mitglieder eine hohe Offenheit aufweisen, obwohl nur Alice dies als Präferenz mitbringt?

Wie hoch ist die Wahrscheinlichkeit, dass alle Mitglieder eine hohe Gewissenhaftigkeit aufweisen, obwohl nur Bob dies als Präferenz mitbringt?

Wie hoch ist die Wahrscheinlichkeit, dass sich das System in einem Collective Mind Zustand befindet und zwar in zwei Varianten. Variante 1: alle Offenheit-Qubits sind verschränkt. Variante 2: alle Offenheit-Qubits und alle Gewissenhhaftigkeits-Qubits sind verschränkt.

Wir definieren wieder einen Projektionsoperator, der in diesem Fall ein Interaktionsoperator ist und nehmen der Einfachheit hier an, dass lediglich gleiche Big Five Dimensionen der Teammitglieder miteinander wechselwirken. Dies ist keine grundsätzliche Einschränkung, sondern ist lediglich der schon recht hohen Komplexität geschuldet. Abbildung 4 zeigt die wesentlichen quantenmechanischen Gleichungen.

Der Interaktionsoperator​ modelliert die Tendenz von Personen, sich aufgrund von Ähnlichkeiten in ihren Merkmalen zu beeinflussen. Wenn zwei Personen ähnliche Zustände für ein Merkmal haben, verstärkt der Operator diese Ähnlichkeit durch die Interaktion.

Wir können auf dieser Basis Wahrscheinlichkeiten für den Übergang aller Teammitglieder zu hoher Offenheit bzw. hoher Gewissenhaftigkeit berechnen. Damit können wir zwei der oben gestellten Fragen beantworten.

Um die dritte Frage zu beantworten, wie wahrscheinlich ist das Eintreten eines Collective Mind (CM), ist es wieder nötig entsprechende Projektionsoperatoren für Variante 1 und Variante 2 der Verschränkung zu bilden.

Dieser Collective Mind Operator projiziert ausgehend vom vorher berechneten Interaktions-Zustand auf einen Zustand maximaler Verschmelzung der individuellen Zustände zu einem gemeinsamen Bewusstsein.

CM Variante 1: Alle Qubits sind verschränkt. Dies repräsentiert einen Zustand, in dem alle Personen in Bezug auf beide Persönlichkeitsmerkmale vollständig synchronisiert sind.

CM Variante 2: Nur die Offenheits-Qubits sind verschränkt. Lediglich die Dimension Offenheit ist verschränkt, während Gewissenhaftigkeit variiert.

Abbildung 5 zeigt die quantenmechanischen Collective Mind Projektionsoperatoren für Variante 1 und 2.

Abbildung 5: Die Collective Mind Operatoren zu Variante 1 und 2

Nun zu den Ergebnissen: Das recht komplexe Python Programm für die Colab Umgebung wurde mit der AI-Assistenz von ChatGPT 4o1-preview erstellt. Hierbei wurde die Quantum Toolbox QuTIP [6] für die quantenmechanischen Tensor-Operationen verwendet.

Die modellierten Ergebnisse entsprechen qualitativ meinen Erfahrungen in Teams:

Die Ausbildung von einer Team-Präferenz für eine der Big Five Dimensionen hängt von der Reihenfolge der Interaktionen im Team ab: Je nachdem wer zuerst spricht entwickelt sich eine unterschiedliche Dynamik. Es ist von Vorteil, wenn zuerst Personen mit ähnlichen Präferenzen die Kommunikation starten. Sie unterstützen selbst dann Team-Präferenzen, wenn sie selbst keine Präferenz darin haben.  

Die Wahrscheinlichkeit für eine Team-Präferenz Offenheit ist moderat, also nicht oberhalb von 50%, wenn nur eine Person diese als persönliche Präferenz hat.

Falls die Präferenz Gewissenhaftigkeit in einem Team durch eine Person vorhanden ist, kann es sein, dass sich die Team-Präferenz Offenheit in einem Team überhaupt nicht ausprägt.

Falls die persönliche Präferenz Gewissenhaftigkeit nur einmal (oder auch mehrmals, gemäß meiner Erfahrung) im Team vorhanden ist, ist die Wahrscheinlichkeit groß, dass sich keine Team-Präferenz Gewissenhaftigkeit ausbildet.

Abbildung 6 zeigt ein Beispiel für ein Szenario, in dem ich die weiter oben angegebenen persönlichen Präferenzen der Teammitglieder für Szenario 4 verändert habe: Die Präferenz Offenheit bleibt wie oben angegeben, jedoch setze ich die Präferenz Gewissenhaftigkeit für alle Teammitglieder auf ‚unbestimmt‘. Das erstaunliche hier ist, dass sich eine gewisse Wahrscheinlichkeit für eine Team-Präferenz Gewissenhaftigkeit ausbildet, obwohl keines der Teammitglieder diese Präferenz hat. In anderen, hier nicht gezeigten Szenarien, führt schon eine persönliche Präferenz Gewissenhaftigkeit immer zu einer sehr geringen Team-Präferenz Gewissenhaftigkeit. Auch dies entspricht meiner Erfahrung.

Abbildung 6: Die Wahrscheinlichkeiten zur Ausbildung der Team-Präferenzen Offenheit und Gewissenhaftigkeit in Abhängigkeit der Interaktionsreihenfolge. Die persönlichen Präferenzen Offenheit von Alice, Bob und Charlie entsprechen den ursprünglich festgesetzten. Die persönlichen Präferenzen Gewissenhaftigkeit für alle drei Personen wurde für dieses Szenario auf unbestimmt gesetzt.

Abbildung 7 zeigt für das Szenario 4 aus Abbildung 6 die Wahrscheinlichkeiten der Ausbildung eines Collective Mind für die Varianten 1 und 2. Die Wahrscheinlichkeit der Ausbildung eines Collective Mind für die Variante 1 (Offenheit und Gewissenhaftigkeit verschränkt) ist deutlich geringer als für Variante 2 (nur Offenheit verschränkt). Die Ausbildung des Collective Mind hängt auch ein wenig von der Interaktionsreihenfolge ab. Jedoch ist diese Abhängigkeit sehr gering: Wenn sich überhaupt ein Collective Mind ausbildet, so hat die Interaktionsreihenfolge kaum noch Einfluss darauf.

Abbildung 7: Die Wahrscheinlichkeiten zur Ausbildung eines Collective Mind für die Varianten 1 (Offenheit und Gewissenhaftigkeit sind verschränkt) und Variante 2 (nur Offenheit ist verschränkt).

Zusammenfassend stelle ich fest:

Der Quantum Cognition Formalismus liefert keine unsinnigen Ergebnisse. Im Gegenteil: Die Ergebnisse decken sich qualitativ mit meinen Erfahrungen. Ich finde die qualitative Interpretation der Ergebnisse erstaunlich nahe an der Praxis: So nahe, dass es schon sehr an Magie grenzt.

Der Nachteil ist, dass der Quantum Cognition Formalismus sehr anspruchsvoll ist. Ohne die AI-Assistenz von ChatGPT4o1-preview wäre es mir nicht möglich gewesen, diese Berechnungen durchzuführen. ChatGPT4o1-preview strauchelte auch einige Male. – Gemeinsam war es jedoch gut möglich dies aufzufangen.

Die Übertragung der Berechnungen auf ein QC Hardware System würde es erlauben, Teamgrößen von 7-10 Teammitgliedern zu modellieren. – Jedoch ist dies ein deutlicher Schritt in Richtung Komplexität, der es aber eventuell wert sein könnte.

[1] Wikipedia (2024a) Quantum Cognition, https://en.wikipedia.org/wiki/Quantum_cognition

[2] Brody D C (2023) Quantum formalism for the dynamics of cognitive psychology, https://www.nature.com/articles/s41598-023-43403-4

[3] Pothos E M und Busemeyer J R (2022) Quantum Cognition, Annual Review of Psychology, https://www.annualreviews.org/content/journals/10.1146/annurev-psych-033020-123501

[4] Wikipedia (2024b) Quantum Mind, https://en.wikipedia.org/wiki/Quantum_mind

[5] Oswald A, Köhler J, Schmitt R (2018) Project Management at the Edge of Chaos, Springer, Heidelberg

[6] QuTIP (2024) QuTIP Quantum Toolbox in Python, https://qutip.org/

Von ‚Agil ist tot‘ und anderen pathologischen Transformationen

Unter Mitwirkung meines Management 4.0-AI-Assistenten myGini (basiert auf chatGPTplus 4x)

In meinem bzw. unserem ersten Blog-Beitrag „Von Wokeness und anderen pathologischen Transformationen“ haben wir die Dynamiken untersucht, die zu einer übermäßigen und oft verzerrten Anpassung an soziale und kulturelle Strömungen führen. In diesem Beitrag wollen wir uns einem weiteren Phänomen widmen, das in der Geschäftswelt für Verwirrung sorgt: Die Behauptung, dass ‚Agil tot ist‘.

Abbildung 1: Grundidee erstellt von myGini/ChatGPT4o/Dall-E, bearbeitet von mir, da die KI nicht in der Lage war, die von mir vorgegebenen Begriffe in den Baum einzusetzen.

Rückblick auf ‚Von Wokeness und anderen pathologischen Transformationen‘

Bevor wir uns mit der Behauptung ‚Agil ist tot‘ befassen, lohnt es sich, den Kerngedanken des ersten Blog-Beitrags kurz zu rekapitulieren: Ursprünglich positive Ideen und Bewegungen gleiten durch Übertreibung und Fehlinterpretation in eine pathologische Richtung ab. Basis für dieses Abgleiten sind ‚ungesunde‘ Entwicklungen individueller Grundbedürfnisse. Diesen Kerngedanken übertragen wir auf die Untersuchung der Aussage ‚Agil ist tot‘.

Die Wurzeln des Agilen Manifests

Das Agile Manifest, das im Jahr 2001 von einer Gruppe von Softwareentwicklern formuliert wurde, setzte neue Standards für Flexibilität, Kundenorientierung und iterative Entwicklungsprozesse. Das Agile Manifest [1] besteht aus lediglich vier Prinzipien, die unmittelbar mit menschlichen Grundbedürfnissen verbunden sind:

Selbstwirksamkeit: Innerhalb vertretbarer Zeit ein Ergebnis zu liefern, das einen Nutzen stiftet. – Wir wollen etwas Sinnvolles tun.

Kontrolle über die eigene Arbeit zu erhalten: Nicht Dokumente und Verträge allein bestimmen die Arbeit. – Menschen sind der wichtigste Faktor.

Teamorientierung: Der Auftraggeber gehört als Kunde zum Team. – Das Denken in Gruppensilos gehört der Vergangenheit an.

Lust an der Arbeit: Leben heißt Veränderung, deshalb ist es wichtig Veränderungen auch in Projekten willkommen zu heißen. – Vielfalt macht mehr Spaß.

Diese Prinzipien haben die Art und Weise, wie Projekte und Teams organisiert und geführt werden, revolutioniert.  Leider nicht überall. – In den letzten Jahren ist eine Gegenbewegung entstanden, die behauptet, dass Agilität nicht mehr relevant sei. – Man vergegenwärtige sich diese Aussage: Dies bedeutet, dass in Zeiten von VUCA [2] Agilität keine Bedeutung mehr haben soll und dass ein Arbeiten, das die menschlichen Grundbedürfnisse unterstützt nicht mehr gefragt ist.

Der Ruf nach Veränderung: ‚Agil ist tot‘

Dieser Ruf ‚Agil ist tot‘ ist das Ergebnis einer pathologische Transformation, die durch mehrere Faktoren beeinflusst wird:

Missverständnisse und Fehlanwendungen: Viele Unternehmen haben agile Methoden übernommen, ohne die zugrunde liegenden Prinzipien (vollständig) zu verstehen. Dies führte zu oberflächlichen Implementierungen, die die gewünschten Ergebnisse nicht liefern können.

Kommerzialisierung und Überregulierung: Agile Methoden wurden zunehmend kommerzialisiert, was zur Entwicklung von standardisierten und oft starren Frameworks führte. Dies steht im Widerspruch zur ursprünglichen Flexibilität und Anpassungsfähigkeit der agilen Prinzipien.

Komplexität und Überforderung: In einem zunehmend komplexen Gesellschafts- bzw. Geschäftsumfeld fühlen sich viele Führungskräfte und Teams überfordert. Der Ruf nach „Agilität ist tot“ spiegelt oft eine tiefere Sehnsucht nach Stabilität und Kontrolle wider.

Selbstorganisation und kollektiven Intelligenz: Geführte Selbstorganisation und die damit verbundene kollektive Intelligenz ist ein zentraler Aspekt erfolgreicher agiler Transformationen. Die Fähigkeit von Teams, sich selbst zu organisieren und auf sich verändernde Umstände zu reagieren, ist entscheidend für die Schaffung wertschöpfender Komplexität und Emergenz​​​​. Leider findet keine wirkliche Auseinandersetzung mit den Prinzipien der Selbstorganisation [3] statt. – Die fehlende (anstrengende) Auseinandersetzung mit den Prinzipien der Selbstorganisation beginnt schon bei denjenigen, die Agilität vermitteln bzw. lehren.

Pathologische Transformationen im agilen Kontext

Pathologische Transformationen im Kontext der Agilität können verschiedene Formen annehmen:

Übermäßige Formalisierung: Anstatt sich auf die Kernprinzipien von Agilität zu konzentrieren, neigen Organisationen dazu, übermäßig formale und bürokratische Prozesse einzuführen. Dazu gehört auch die dogmatische Anwendung agiler Methoden sowie das sogenannte „Agile Theater“.

  • Dogmatische Anwendung: Wenn Agilität strikt nach Lehrbuch oder Guide praktiziert wird – in dem Regeln extrahiert werden und befolgt werden, ohne diese wirklich zu verstehen und ohne Rücksicht auf die individuellen Bedürfnisse und Kontexte der Teams und Organisationen – entsteht eine starre und unflexible Arbeitsweise. Dies führt dazu, dass die Anpassungsfähigkeit und die Kreativität der Teams eingeschränkt werden. Anstatt auf Veränderungen und neue Herausforderungen flexibel reagieren zu können, verharren die Teams in festgefahrenen Prozessen, die der agilen Philosophie widersprechen.
  • Agile Theater: Unternehmen, die agile Rituale und Meetings durchführen, ohne die zugrunde liegenden Prinzipien tatsächlich zu leben, betreiben oft eine Art „Agiles Theater“. Dies bedeutet, dass sie zwar die äußeren Formen und Strukturen der Agilität (partiell) übernehmen, aber die dahinterstehenden Werte und Prinzipien ignorieren. Infolgedessen bleibt der wahre Nutzen der Agilität aus, da die oberflächliche Anwendung keinen echten Wandel in der Arbeitsweise und Kultur des Unternehmens bewirkt.
  • Hybride Anwendung: Aus Angst etwas falsch zu machen, werden bisherige Praktiken bezüglich der zugrundeliegenden Werte und Grundannahmen nicht hinterfragt. Es werden agile Methoden auf dem Boden traditioneller Denkweisen eingeführt.  Der Glaubenssatz, dass ein Unternehmen nur dann erfolgreich ist, wenn alle Mitarbeiter überlastet sind und viele Projekte gleichzeitig bearbeiten werden, dies ist ein solcher Glaubenssatz.

Ignorieren der menschlichen Dimension: Agile Prinzipien betonen die Bedeutung von Kommunikation, Zusammenarbeit und Vertrauen. Eine pathologische Transformation tritt auf, wenn diese menschlichen Aspekte vernachlässigt werden und der Fokus ausschließlich auf Tools und Prozessen liegt. Ohne das menschliche Element verliert Agilität ihre Wirksamkeit.

Kurzfristiges Denken: Agilität beruht auf Selbstorganisation und fördert eine iterative und inkrementelle Herangehensweise, die langfristige Anpassungsfähigkeit ermöglicht. Pathologische Transformationen entstehen, wenn kurzfristige Gewinne über langfristige Nachhaltigkeit gestellt werden. Dies führt zu einer Kultur der Schnellschüsse, die die Ausbildung langfristiger Fähigkeiten im Umgang mit Komplexität und Unsicherheit verhindert.

Management Übernahme: Wenn Führungskräfte agile Methoden als reines Kontrollinstrument implementieren, um größere monetäre Leistung zu erwirtschaften, wird die eigentliche Idee der Agilität pervertiert. Anstatt Teams Autonomie und Verantwortung zu geben, wird Agilität genutzt, um Mikromanagement zu betreiben und den Druck auf die Mitarbeiter zu erhöhen. Dies führt zu einem Verlust des Vertrauens und der Motivation im Team und steht im direkten Widerspruch zu den Prinzipien der Selbstorganisation und Eigenverantwortung, die zentral für die Agilität sind.

Analyse der pathologischen Transformationen durch menschliche Grundbedürfnisse

Wie in unserem ersten Blog-Beitrag zu pathologischen Transformationen beschrieben, können pathologische Transformationen auf ungesunde Entwicklungen individueller Grundbedürfnisse zurückgeführt werden. Diese Erkenntnis übertragen wir auf die agile Transformation:

Bedürfnis nach Selbstwerterhöhung und Selbstwertschutz:

Dogmatische Anwendung: Führungskräfte und Mitarbeiter, die agile Methoden strikt nach Lehrbuch anwenden, können dies aus einem Bedürfnis nach Anerkennung und Bestätigung tun. Indem sie sich strikt an Vorgaben halten, versuchen sie, ihren eigenen Wert zu demonstrieren und sich vor Kritik zu schützen. Diese starre Anwendung führt zu einer unflexiblen und ineffektiven Arbeitsweise.

Agiles Theater: Das zur Schau stellen agiler Methoden ohne deren Werte zu leben, kann ebenfalls aus einem Bedürfnis nach sozialer Anerkennung resultieren. Unternehmen wollen modern und innovativ erscheinen, ohne sich wirklich auf die Veränderungen einzulassen, die echte Agilität erfordert.

Hybride Anwendung: Bisherige Arbeitsweisen werden bezüglich der zugrunde liegenden Werte und Glaubenssätze nicht in Frage gestellt. – Dies geschieht aus individuellem oder organisationalem Selbstschutz. – Die mit bisherigen Arbeitsweisen verbundenen Privilegien will man nicht aufgeben. Letztendlich verharren Personen und Unternehmen in dominierenden Werten wie Macht, Status, Anerkennung (sowie Ordnung und Kontrolle) und wenden aus diesem Werteprofil heraus vermeintlich Agilität an.

Bedürfnis nach Ordnung und Kontrolle:

Übermäßige Formalisierung: Das Bedürfnis nach Ordnung und Kontrolle führt oft dazu, dass Unternehmen agile Methoden übermäßig formalisieren. Dies schafft eine scheinbare Sicherheit und Struktur, erstickt jedoch die Flexibilität und Anpassungsfähigkeit, die Agilität ausmacht.

Management Übernahme: Führungskräfte, die Agilität als Kontrollinstrument nutzen, tun dies oft, um ihre eigene Unsicherheit und das Bedürfnis nach Kontrolle zu kompensieren. Dies widerspricht den Prinzipien der Selbstorganisation und Eigenverantwortung und untergräbt das Vertrauen und die Motivation der Teams.

Bedürfnis nach Lust und Unlustvermeidung:

Kurzfristiges Denken: Unternehmen, die kurzfristige Gewinne über langfristige Nachhaltigkeit stellen, handeln oft aus einem Bedürfnis heraus, schnelle Erfolge zu erzielen und Unannehmlichkeiten zu vermeiden. Dies führt zu einer Kultur der Schnellschüsse, die die langfristige Entwicklung und Anpassungsfähigkeit beeinträchtigt. Die VUCA-Kompetenz wird torpediert.

Bedürfnis nach Bindung und Zugehörigkeit:

Ignorieren der menschlichen Dimension: Das Ignorieren der menschlichen Aspekte in agilen Transformationen kann das Bedürfnis nach Bindung und Zugehörigkeit untergraben. Agile Prinzipien betonen Zusammenarbeit, Vertrauen und Kommunikation. Wenn diese Aspekte vernachlässigt werden, fühlen sich Mitarbeiter entfremdet und demotiviert, was die Effektivität der agilen Methoden sehr stark beeinträchtigt.

Fazit und Ausblick

Der Ruf „Agil ist tot“ ist oft ein Symptom tiefer liegender Probleme und Missverständnisse. Anstatt Agilität als veraltet abzutun, sollten wir uns darauf konzentrieren, die zugrunde liegenden Prinzipien zu verstehen und anzuwenden. Selbstorganisation, kollektive Intelligenz und ein ausgewogenes Verhältnis von Emergenz und vorgegebener Struktur (d.h. Governance, man siehe hierzu diverse vorherigen Blog-Beiträge und die dort genannte weiterführende Literatur) sind Schlüsselkomponenten, um in einer komplexen und sich ständig verändernden Welt erfolgreich zu sein.

Künstliche Intelligenz in der Projektarbeit kann neue Möglichkeiten für hybride kollektive Intelligenz eröffnen. – Man siehe hierzu viele meiner vorherigen Blog-Beiträge.
Diese Form der Zusammenarbeit zwischen Mensch und Maschine kann die Effizienz und Effektivität von Projekten erheblich steigern und neue Wege der Problemlösung eröffnen​​. Jedoch erfordert dies ein ‚gesundes‘ individuelles und organisationales Agilitäts-Verständnis. Falls dies nicht der Fall ist, ist zu erwarten, dass sich die pathologischen Strukturen verfestigen [4].

Wir laden unsere Leser ein, ihre Erfahrungen und Gedanken zu diesem Thema zu teilen.

[1] Agile Manifest (2024) https://agilemanifesto.org/iso/de/manifesto.html, Stand 28.05.2024

[2] Wikipedia (2024) VUCA, https://en.wikipedia.org/wiki/VUCA, Stand 28.05.2024

[3] Oswald A, Köhler J und Schmidt R (2018) Project Management at the Edge of Chaos, Social Techniques for Complex Systems, Springer Nature, Heidelberg

[4] Oswald A, Flore A, Lang R und Nuhn H (2024) Collective Intelligence von KI und Mensch in der Projektarbeit – Ein Rahmenwerk auf der Basis von ICB 4.0 und Management 4.0, in Bernert C, Scheurer S und Wehnes H (Hrsg.), KI in der Projektwirtschaft – Was verändert sich durch KI im Projektmanagement?, GPM Trend, GPM Deutsche Gesellschaft für Projektmanagement e.V., UVK Verlag, Münche

AI & M 4.0: ‘Welt am Draht‘ oder Hybrid Collective Intelligence mit dem GPT-Multi-Agenten-System crewAI

Im Oktober 1973 zeigt das ARD den Zweiteiler ‚Welt am Draht‘ von Rainer Werner Fassbinder [1]. – Ein Film, der mich damals gleicher Maßen faszinierte wie auch beklemmend wirkte: Er behandelte die Frage nach unserem Sein und kam zu dem Schluss, das wir Menschen, die künstliche Welten über Simulationen erschaffen können, selbst eine Computersimulation sind.

Mit den heutigen Systemen generativer künstlicher Intelligenz (GPT-Systemen) stehen wir genau an dieser Schwelle solche Simulationen erzeugen zu können. Die GPT-Systeme liefern die kognitive Intelligenz und vielleicht irgendwann künstliches Bewusstsein. Mit Multi-Agent-Systemen, die GPT-Systeme einbinden, lassen sich künstliche Agenten Populationen erschaffen.

Abbildung 1: Welt am Draht – Selbstorganisierte Multi-Agent-Systeme lassen die Grenze zwischen biologischer Realität und simulierter Realität verschwinden. D.i. eine Collage aus zwei Bildern: rechte Seite generiert von chatGPTplus/DALL.E mit dem obigen Blog-Text als Prompt, linke Seite generiert von myGini/DALL.E; myGini hat den Prompt in mehreren Iterationen selbst angepasst und um das Konzept der Selbstorganisation erweitert.

In verschiedenen Blog-Beiträgen des letzten Jahres habe ich das Potential von Agent Based Modeling (ABM) behandelt: Diese Blog-Beiträge diskutieren die Anbindung unserer ‚realen‘ Welt an die virtuelle AI Welt, das Sichtbarmachen emergenter Struktur in sozialen Systemen mittels ABM und die Möglichkeit von Simulationen à la ‚Welt am Draht‘.
Seit Ende 2023/Anfang 2024 ist das open source Multi-Agent-System crewAI verfügbar [2]. Es wurde von João Moura [3] kreiert. Das Framework crewAI stellt Agenten, Tasks, einen Prozess und eine Crew bzw. eine Gruppe oder Team als Python-Klassen zur Verfügung. Die Agenten erhalten ihre Intelligenz von GPT-Systemen wie chatGPT. Der Prozess wird über das Large Language Model (LLM)-Prozessmanagement Werkzeug LangChain bereitgestellt [4]. – crewAI ist also ein Multi-Agent System, in dem die Agenten die Intelligenz generativer AI Systeme haben. Seit der Einführung von crewAI ist eine große Anzahl an Applikationsbeispielen entstanden. – Hier nur ein Auszug [2], [5], [6], [7], [8], [9], [10], [11], [12], [13]: Die Struktur dieser Beispiele ist sehr ähnlich: Agent A führt eine Task durch, und übergibt das Resultat an Agent B, der die Resultate von A in einer zweiten Task bearbeitet und an einen nachfolgenden Agenten weitergibt, usw.. Z.B. extrahiert Agent A bestimmte Information aus dem Internet, gibt diese Information an Agent B weiter, der in der übergegebenen Information nach bestimmten Themen sucht, usw..
Die Entwicklung von crewAI ist noch sehr im Fluss, so dass die Dokumentation unter [2] nicht immer aktuell ist, jedoch gibt es eine discord community, die einem schnell mit Rat und Tat zur Seite steht [14]. Unter chatGPTplus gibt es inzwischen verschiedene GPTapps, die helfen ein crewAI Python Programm zu erstellen. – Bezüglich der Thematik GPTapps, siehe man meinen Blog-Beitrag zur Erstellung der GPTapp Management 4.0 Coach myGini.
Ich habe die GPTapp CrewAI Assistant von João Moura benutzt, um Code zu erzeugen.- Auch hier ist es so, dass man sich auf den CrewAI Assistant nicht bedingungslos verlassen sollte, denn er erzeugt keinen fehlerfreien Code. – Jedoch mit etwas Python Erfahrung und gutem iterativen Prompting, wie ich es im letzten Bog-Beitrag beschrieben habe, kommt man den Problemen recht schnell auf die Spur.
Angeregt durch den MDR-Beitrag ‚Better than humans‘, in dem chatGPT auf seine Fähigkeit als Coach und Gesprächspartner für Menschen mit erstaunlich guten Ergebnissen getestet wurde [15], will ich ein crewAI Beispiel erstellen, in dem ein AI-Coach ‚Agile Management 4.0 Experte‘ einen AI-Coachee ‚Scrum Master‘ coached.
Hierzu habe ich chatGPTplus über die entsprechende openai API Plattform [16] an die crewAI Agenten angebunden. Die API Plattform hat einen von der chatGPTplus Prompting Umgebung unabhängigen Zugang. Leider kann ich deshalb auch nicht die von mir erstellte GPTapp myGini als Management 4.0 Coach benutzen, sondern muss mit den Möglichkeiten von chatGPTplus auskommen. – Derzeit kann man (noch) nicht auf GPTapp’s zugreifen.
Im Folgenden ist der Python-Code, den ich mit dem CrewAI Asssitant erzeugt habe, zu sehen. – Der Code ist sehr gut lesbar, auch ohne Python Kenntnisse, deshalb gebe ich ihn hier, bis auf die Colab Systemeinstellungen, vollständig wieder:

*******Code Beginn******
Agent: Coach

coach = Agent(
role=’Agile Management 4.0 Expert‘,
goal=“““Guide the coachee through a series of communication feedback loops to address team performance issues effectively.“““,
backstory=“““As an expert in Agile Management 4.0, your approach is deeply influenced by your Big Five personality traits: High Openness and Introversion, High Agreeableness, Low Conscientiousness, and Low Neuroticism. This makes you exceptionally open to new experiences and ideas, highly sociable, empathetic, flexible, and stress-resistant. You use these traits to encourage innovative problem-solving and to build strong, collaborative relationships with your coachee. You try to find out which Big Five temperament your coachee has by forming hypotheses by assigning the coachee’s answers to a Big Five dimension and assigning a probability to them. You adapt your questions and suggested solutions to your actual hypotheses. – Over time, your hypotheses about the coachee’s temperament becomes more and more accurate. Your coaching style is to lead by asking questions, more than by proposing solutions. You deal with one topic per communication feedback cycle. – A topic can be for example, that the coachee may report a problem.- A communication feedback cycle contains one statement or question for both coach and coachee. – This means that you only ask one question or suggest one solution per communication feedback cycle.“““,
verbose=1,
memory=True
)

Agent: Coachee

coachee = Agent(
role=’Scrum Master‘,
goal=“““Implement solutions based on the coach’s feedback and report on progress to receive further guidance.“““,
backstory=“““As a Scrum Master, you’re facing challenges with your team’s performance. Your interaction with your coach, will be influenced by your personality traits. – Your approach is deeply influenced by your Big Five personality traits: Medium Openness and Extraversion, Low Agreeableness, High Conscientiousness, and Medium Neuroticism. You act according to the Big Five temperament indicated here but you don’t tell your Big Five temperament, only in the case that your coach is asking.“““,
verbose=1,
memory=True
)

Aufgaben definieren

tasks = []

Aufgabe 1: Beschreibung der Herausforderungen durch den Coachee

tasks.append(Task(
description=“““Describe the specific challenges your Scrum team is facing, choose one issue from your experience. Provide detailed descriptions of these issue.“““,
agent=coachee,
expected_output=“Eine detaillierte Beschreibung eines spezifischen Problems, mit dem das Scrum-Team konfrontiert ist.“
))

Aufgabe 2: Erstes Feedback des Coaches und Aktionsplan

tasks.append(Task(
description=“““Based on the coach description, provide initial feedback and an actionable plan addressing the described challenges. Your feedback should leverage your Agile Management expertise and your personality traits to propose innovative and effective solutions.“““,
agent=coach,
expected_output=“Anfangsfeedback und ein umsetzbarer Plan, der auf den beschriebenen Herausforderungen basiert.“
))

Feedbackschleifen

for i in range(1, 2): # Anzahl Feedbackschleifen
Coachee implementiert Lösungen und berichtet über Fortschritte

tasks.append(Task(
description=f’Implement the solutions suggested by the coach and report on the progress and any new challenges that have arisen. This is feedback loop {i}.‘,
agent=coachee,
expected_output=f’Bericht über die Umsetzung der vorgeschlagenen Lösungen und Fortschritte nach Feedbackschleife {i}.‘
))

Coach bietet weiteres Feedback und Anpassungen

tasks.append(Task(
description=f’Based on the Coachee progress report and any new challenges, provide further feedback and adjustments to the action plan. Leverage your personality traits to inspire creative solutions and maintain a positive collaborative coaching relationship. This is feedback loop {i}, aiming to refine strategies and encourage continuous improvement.‘,
agent=coach,
expected_output=f’Weiteres Feedback und Anpassungen des Aktionsplans nach Feedbackschleife {i}.‘
))

Crew und Prozess initialisieren

crew = Crew(
agents=[coachee, coach],
tasks=tasks,
verbose=1,
process=Process.sequential
)

Arbeitsablauf starten

result = crew.kickoff()

****** Code Ende******

Der Code beschreibt eine Kommunikation zwischen Coach und Coachee mit einem Gesprächsauftakt und zwei Kommunikationsschleifen (siehe den Code: Anzahl Feedbackschleifen ist 2). – Mehr Schleifen ist nicht mehr überschau und kostet zu viel Rechenzeit und damit Geld, das man zusätzlich zum Prompting chatGPTplus Zugang zu bezahlen hat.
Sieht man einmal von dem Kommunikationsprozess, dargestellt über die Feedbackschleifen, ab, so ist der Code nichts anderes als Prompting. – Die Agenten und die Aufgaben werden über Prompting definiert. Wie bei gutem Prompting auch, versetzt man ChatGPTplus in eine Rolle, gibt ein Ziel an, beschreibt den Kontext und definiert die Aufgabe. crewAI stellt die verschiedenen Hüllen über Python-Klassen zur Verfügung, die mit einer chatGPTplus Prompting Ausprägung gefüllt werden. – Hier noch eine Anmerkung zu den GPTapps wie myGini: myGini wurde auf eine nahezu identische Weise über Prompting definiert. myGini ist also auch ein Agent. – Könnte ich myGini verwenden, ließen sich Ketten von Agenten mit immer spezifischeren Eigenschaften erstellen. – Dies wird sicherlich in absehbarer Zeit möglich sein. chatGPTplus stellt dann in dieser ‚Welt am Draht‘ das ‚höchste Wesen‘ dar. – Faszinierend und beklemmend zugleich!
Die Ausgabe der crewAI-Kommunikation ist derzeit nicht wirklich gut zu verstehen. Es werden, nicht gut nachvollziehbar, vorbereitende ‚Gedanken‘ und Handlungsergebnisse der AI-Systeme mit Kommunikationsaktivitäten zwischen Coach und Coachee ausgegeben. – Aus diesem Grunde habe ich die Ausgabe etwas strukturiert, um den Ablauf verständlicher zu machen. – Meine Hinweise sind fett unterlegt. Hier ein Auszug der crewAI-Ausgabe, die meines Erachtens einer menschlichen Kommunikation recht gut nahe kommt:

****** Ausgabe crewAI Beginn******

Auftakt der Kommunikation, der Scrum Master wird eingestimmt:
Scrum Master ‘Gedanken’ (Kontext Herstellung):

The first step is to identify the challenges that my Scrum team is facing. Given my low agreeableness, I tend to be critical and not easily swayed by others‘ opinions. This can be helpful in identifying issues that others may not see or may be unwilling to acknowledge. On the other hand, my high conscientiousness means I’m organized and detail-oriented, which should help me in describing a specific problem in detail.

Action:
Ask question to co-worker Coach

Action Input:
{
„coworker“: „Agile Management 4.0 Expert“,
„question“: „What are some of the common challenges that Scrum teams face that could be affecting our team’s performance?“,
„context“: „We are currently experiencing issues with our team’s performance. I am trying to identify a specific problem that we are facing so that we can address it. Given your expertise in Agile Management, I believe you could provide valuable insight into this matter.“
}

Der Coach erhält die Frage mit dem Kontext und sucht über chatGPTplus nach Antworten – Die chatGPTplus Antworten werden für den Agenten Coach gelistet und dieser nimmt sie als ‚Gedanken‘ auf und antwortet als Coach:

Based on the context and my expertise in Agile Management 4.0, there are several common challenges that Scrum teams may face that could be affecting our team’s performance.

Final Answer: Some of the common challenges that Scrum teams face include:

  1. Lack of Clear Communication: This is a major issue in many Scrum teams. If team members are not communicating effectively, misunderstandings can occur, leading to mistakes and delays in the project.
  2. Insufficient Understanding of Scrum: If all team members do not fully understand the principles and practices of Scrum, it can affect how they carry out their tasks and interact with each other.
  3. Poor Product Backlog Management: A poorly managed product backlog can lead to confusion, wasted effort, and a lack of focus. It is crucial that the product backlog is effectively managed and that items are prioritized correctly.
  4. Failure to Adapt: Scrum is all about adaptability. If the team is resistant to change or does not adapt to changes quickly, it can affect the project’s progress and overall performance.
  5. Inadequate Definition of Done: If the team does not have a clear and shared understanding of what „done“ means for each task, it can lead to inconsistencies and issues with product quality.
  6. Lack of Trust: If team members do not trust each other or the Scrum process, it can lead to problems with collaboration and overall team performance.

Identifying and addressing these issues can be a significant step towards improving our team’s performance. We might need to provide more training, improve our communication practices, or make adjustments to our Scrum processes.

Scrum Master ‘Gedanken’ (Kontext Herstellung):

Given the expert’s feedback, I realize our team is struggling with clear communication. Misunderstandings have been leading to mistakes and delays in our project. As a Scrum Master with a medium level of Neuroticism, I am sensitive to potential problems and it’s clear this is one we have to tackle. I must devise a plan to improve communication within our team.

Action:
Delegate work to co-worker Coach

Action Input:
{
„coworker“: „Agile Management 4.0 Expert“,
„task“: „Develop a clear and effective communication strategy for our Scrum team“,
„context“: „Based on our previous conversation, it was identified that one of the major challenges our team is facing is a lack of clear communication. This has led to misunderstandings, mistakes, and delays in our project. I would like you to develop a clear and effective communication strategy for our Scrum team to mitigate these issues. This strategy should outline clear communication channels, set expectations for regular updates and feedback, and provide guidelines for conflict resolution. Please provide a detailed plan that we can implement immediately to start improving our team’s communication.“
}

Agile Management 4.0 Experte ‘Gedanken’ (Kontext Herstellung):

Considering my Big Five personality traits, my approach will be to foster openness, empathy, and collaboration while addressing this challenge. I will prioritize creating a safe environment for open communication, encouraging each team member to share their ideas and concerns. I will also focus on creating a flexible plan that can be adjusted as needed to ensure its effectiveness. Let’s start by identifying potential communication channels, setting expectations, and establishing guidelines for conflict resolution.

ChatGPTplus liefert die möglichen Antworten, die dann vom Coach ausgegeben werden:

An effective communication strategy for our Scrum team could encompass the following elements:

  1. Communication Channels: Establish primary and secondary communication channels for different types of interaction. For instance, use email for non-urgent, formal communications and a platform like Slack for real-time, informal discussions. Virtual meeting tools like Zoom can be used for daily scrum meetings, sprint planning, reviews, and retrospectives.
  2. Regular Updates and Feedback: Implement a rhythm of communication that provides regular updates and feedback. This can be achieved through daily stand-ups where each team member discusses what they did yesterday, what they plan on doing today, and any blockers they are facing. Weekly or bi-weekly sprint reviews and retrospectives can be used to discuss what went well and what can be improved.
  3. Conflict Resolution: Establish clear guidelines for conflict resolution. Encourage team members to address conflicts directly and promptly, with a focus on the issue at hand rather than personal attacks. If a resolution cannot be reached between the parties involved, involve a neutral third party to mediate.
  4. Openness and Transparency: Foster an environment where team members feel safe to express their ideas, concerns, and mistakes. This can be done by encouraging open discussions, acknowledging and appreciating each member’s contributions, and treating mistakes as opportunities for learning rather than failures.
  5. Training and Support: Provide training and support to team members to ensure they are comfortable with the communication tools and processes. This includes technical support for using the communication platforms as well as guidance on effective communication practices.
  6. Continuous Improvement: Regularly review and adjust the communication strategy to ensure its effectiveness. This can be done through feedback from team members and by monitoring communication-related metrics such as the number and length of meetings, email threads, and messages exchanged.

This strategy should help improve clarity in communication, reduce misunderstandings, and increase overall team efficiency.

Scrum Master ‘Gedanken’ (Kontext Herstellung):

The expert’s communication strategy provides a solid foundation for addressing our team’s communication problems. As a Scrum Master, it’s my responsibility to implement this strategy and make sure it’s effective. My high conscientiousness will be useful in diligently following up on these tasks and making sure they’re executed properly. I now have a detailed understanding of the communication problem our Scrum team is facing and a solid plan for addressing it.

Der Scrum Master wiederholt die Ratschläge und nimmt sie als Aufgaben mit, in dem er jedes Mal für die sechs Ratschläge formuliert „We will….“ und gibt eine abschließende Versicherung ab:

By implementing this strategy, we aim to improve clarity in communication, reduce misunderstandings, and increase our team’s overall efficiency.

Hier erfolgt eine Umsetzung der Ratschläge durch den Scrum Master und man trifft sich wieder…

Agile Management 4.0 Experte ‘Gedanken’ (Kontext Herstellung):

Given the described challenges, it seems the team is already on a good path with their comprehensive communication strategy. The proposed measures cover key aspects of effective communication, such as clear communication channels, regular updates, conflict resolution, and openness. However, to ensure the plan’s effectiveness, it’s essential to monitor its implementation and continuously adapt it based on the team’s needs. My personality traits of high openness and agreeableness will be beneficial in understanding and empathizing with the team’s communication challenges. Low conscientiousness will allow me to be flexible and adaptable in finding solutions, while low neuroticism will help me stay calm and composed even in the face of conflicts or issues.

Action: Ask question to co-worker Coachee

Action Input:
{
„coworker“: „Scrum Master“,
„question“: „Could you share more details about the specific communication issues the team has been facing? And how are the team members responding to the newly proposed communication strategy?“, „context“: „The team has been facing challenges related to clear communication, causing mistakes and delays in the project. A comprehensive communication strategy has been proposed, including clear communication channels, regular updates, conflict resolution, openness, and continuous improvement. I am trying to understand the specific issues and the team’s response to the new strategy to provide an effective solution.“
}

Scrum Master ‘Gedanken’ (Kontext Herstellung):

As a Scrum Master, I understand the importance of clear communication and its impact on the team’s performance. The main issue we’ve been facing is a lack of clarity and understanding during our discussions, leading to misunderstandings, mistakes, and consequently, delays in the project. This is primarily due to the absence of clear communication channels and a structured way of sharing updates.

Additionally, conflicts arising from these issues were not effectively addressed, resulting in unresolved tensions within the team that further impeded our progress. The team’s response to these issues was a mixture of frustration and confusion, affecting both their individual performance and the overall team dynamics.

As for the response to the newly proposed communication strategy, the initial reaction has been positive overall. The team appreciates the clarity provided by the defined communication channels, regular updates, and the structured approach to conflict resolution. However, it’s a significant change from our previous way of working, and some team members are still adjusting to it.

There is a noticeable improvement in our discussions and an increase in the overall understanding of the tasks at hand. However, we’re still in the initial stages of implementing the new strategy, and therefore, continuous monitoring and tweaks may be necessary based on the team’s feedback and the effectiveness of the strategy in resolving our issues.

Scrum Master Final Answer:

The team’s primary communication issue has been a lack of clarity and understanding, leading to mistakes and project delays. This was due to undefined communication channels and an unstructured way of sharing updates, coupled with ineffective conflict resolution. The team’s response to these issues was a combination of frustration and confusion.

As for the newly proposed communication strategy, the initial response has been largely positive. The team appreciates the clear channels, regular updates, and structured conflict resolution. But it’s a significant shift from our previous methodology, and some team members are still acclimating.

Though we’ve seen improvements in our discussions and understanding of tasks, the strategy is still in its early stages, and continuous monitoring and adjustments may be necessary based on the team’s feedback and the strategy’s effectiveness.

Agile Management 4.0 Experte ‘Gedanken’ (Kontext Herstellung):
From the Scrum Master’s response, it’s evident that the team had difficulties due to unclear communication channels and unstructured updates. The new strategy has been positively received, but some members are still adjusting. There are indications of improvements, but continuous monitoring and adjustments are necessary. To ensure that the strategy is effectively implemented, I will suggest an action plan that includes regular check-ins and feedback sessions, training for team members who are struggling with the new communication tools, and a process for continuous improvement based on feedback and metrics.

Action: Delegate work to co-worker Coachee
Action Input:
{
„coworker“: „Scrum Master“,
„task“: „Implement the following action plan to ensure the effectiveness of the new communication strategy: 1. Organize regular check-ins with team members to get their feedback on the new communication processes and methods. These can take place during the daily stand-ups or separately. 2. Provide training and support for team members who are struggling with the new communication tools. This could be in the form of one-on-one sessions or group workshops. 3. Establish a process for continuous improvement based on feedback and metrics. This could involve weekly or bi-weekly reviews of the communication-related metrics and making necessary adjustments to the strategy.“,
„context“: „The team has implemented a new communication strategy to address previous issues with clarity and understanding. The initial response has been positive, but some team members are still adjusting. The aim is to ensure the effective implementation of the strategy and its continuous improvement based on feedback and metrics.“
}

Scrum Master ‘Gedanken’ (Kontext Herstellung)
Given my conscientiousness, I understand the importance of following through on the action plan to ensure the effectiveness of the new communication strategy. I also recognize the necessity of adapting to feedback and modifying the plan accordingly, thanks to my medium level of openness.

However, my low agreeableness implies that I will not simply go along with the coach’s suggestions without critical evaluation. On the other hand, with my medium level of neuroticism, I am quite sensitive to the team’s reactions. Therefore, I will pay close attention to their feedback and emotional responses to the new communication processes and methods. Additionally, my medium extraversion will help me in engaging with the team members during regular check-ins and in providing them the necessary support and training.

Final Answer Coachee:
To ensure the effectiveness of our new communication strategy, I will first organize regular check-ins with all team members. These can be integrated into our daily stand-ups or scheduled separately, depending on what suits best for the team. This will enable us to gather their feedback on the new communication processes and methods.

Secondly, I will provide training and support for those who are struggling with the new communication tools. This could be either one-on-one sessions or group workshops, depending on the need and preference of the team members.

Lastly, I will establish a process for continuous improvement based on the feedback received and the metrics we have. We can have weekly or bi-weekly reviews of the communication-related metrics and adjust our strategy accordingly.

Remember, the ultimate goal here is to enhance the clarity and understanding within the team. So, your constructive feedback is highly appreciated and crucial for the continuous improvement of our communication strategy.………..

****** Ausgabe crewAI Ende******

Hier beende ich die Ausgabe wegen des großen Umfanges; die Kommunikation von Coach und Coachee geht noch einige Seiten weiter bis innerhalb der zwei Feedbackschleifen alle Vorschläge des Coach’s behandelt worden sind.

An diesem crewAI Beispiel kann man sehen, dass diese einfache Simulation einer Coach-Coachee Kommunikation erstaunlich realistisch ist. – Auch wenn man zugestehen muss, dass die Kommunikation in diesem Fall eher einer Beratung entspricht als einem Coaching Prozess.
Mit mehr Aufwand und know-how konnte in [17] gezeigt werden, dass sich eine künstliche Dorf-Welt von 25 Agenten erschaffen lässt. Menschen haben später die Kommunikation dieser 25 Agenten bewertet und kommen zu dem Schluss, dass deren Kommunikation kaum noch von der menschlichen Kommunikation zu unterscheiden ist.

In [18] haben wir verschiedene AI-Technologien im Kontext des IPMA Projektmanagement Frameworks ICB 4.0 beleuchtet, u.a. auch den (zukünftigen) Einsatz von Agent Based Modeling zur Unterstützung der Projektarbeit bzw. des Projektmanagements. Mit dem crewAI Framework ist der Einsatz von GPT basierten Multi-Agenten-Systemen in greifbare Realität gerückt. Selbst die Integration menschlicher Agenten in ein ABM System ist keine technologische Hürde mehr [17].

Die Welt am Draht emergiert!

[1] Wikipedia (2024) Welt am Draht, https://de.wikipedia.org/wiki/Welt_am_Draht, zugegriffen am 17.03.2024
[2] crewAI (2024) https://www.crewai.com/, zugegriffen am 17.03.2024
[3] João Moura (2024) https://twitter.com/joaomdmoura oder https://www.linkedin.com/in/joaomdmoura/
[4] LangChain (2024) https://www.langchain.com/, zugegriffen am 17.03.2024
[5] Reid Thomas (2024) crewAI — Is this the Autogen killer?, https://levelup.gitconnected.com/crewai-is-this-the-autogen-killer-2014b89da374
[6] Dwivedi Priya (2024) The AI Symphony: Testing CrewAI’s Multi-Agent System for complex apps, https://generativeai.pub/the-ai-symphony-testing-crewais-multi-agent-system-for-complex-apps-b377d4f5e6b8
[7] Beerten Toon (2024) Powerful Collaboration of AI Agents with CrewAI, https://medium.com/towards-data-science/powerful-collaboration-of-ai-agents-with-crewai-17f84378430b
[8] Money Tent (2024) How I Made AI Assistants Do My Work For Me — CrewAI!, https://medium.com/@moneytent/how-i-made-ai-assistants-do-my-work-for-me-crewai-d3a0426708eb —-Thinking Fast and Slow
[9] Akim Maya (2024) CrewAI: A Team of AI Agents that Work Together for You,https://medium.com/@mayaakim/crewai-a-team-of-ai-agents-that-work-together-for-you-4cc9d24e0857 —-Thinking Fast and Slow
[10] Datadrifters (2024) CrewAI in Action: Building and Orchestrating Your AI Dream Team, https://medium.com/generative-ai/crewai-in-action-building-and-orchestrating-your-ai-dream-team-21725efcad3b
[11] Huang Yeyu (2024) For a Multi-Agent Framework, CrewAI has its Advantages Compared to AutoGen, https://medium.com/gitconnected/for-a-multi-agent-framework-crewai-has-its-advantages-compared-to-autogen-a1df3ff66ed3
[12] Dalie Gao (2024) CrewAi + Solar/Hermes + Langchain + Ollama = Super Ai Agent, https://medium.com/ai-in-plain-english/crewai-solor-hermes-langchain-ollama-super-ai-agent-0ee348404428
[13] Wijaya Cornellius Yudha (2024) Performing Data Science Tasks with LLM-Based Agents CrewAI, https://medium.com/towards-artificial-intelligence/performing-data-science-tasks-with-llm-based-agents-crewai-71f8eadb0a6d
[14] discord (2024) https://discord.com/, zugegriffen am 17.03.2024
[15] MDR (2023) Better than human – Leben mit KI, https://www.ardmediathek.de/video/ard-wissen/better-than-human-leben-mit-ki/das-erste/Y3JpZDovL21kci5kZS9zZW5kdW5nLzI4MjA0MS8yMDIzMTIyOTA2MDAvbWRycGx1cy1zZW5kdW5nLTc4NzI
[16] openai API Platform (2024) https://platform.openai.com/
[17] Park J S et. al. (2023) Generative Agents: Interactive Simulacra of Human Behavior, arXiv:2304.03442v1 [cs.HC] 7 Apr 2023
[18] Oswald A, Flore A, Lang R und Nuhn H (2024) Collective Intelligence von KI und Mensch in der Projektarbeit – Ein Rahmenwerk auf der Basis von ICB 4.0 und Management 4.0, in Bernert C, Scheurer S und Wehnes H (Hrsg.), KI in der Projektwirtschaft – Was verändert sich durch KI im Projektmanagement?, GPM Trend, GPM Deutsche Gesellschaft für Projektmanagement e.V., UVK Verlag, München

AI & M 4.0: myGini – mein Coach für Team- und Projekt-Management oder wer ist dümmer, KI oder Mensch?

In diesem Blog-Beitrag stelle ich myGini – meinen Coach für Team- und Projekt-Management vor. Bevor ich dies tue, vorweg ein paar grundsätzliche Bemerkungen zur Arbeit mittels KI.

Die Angst vor KI hat sich in den letzten Wochen eher in eine Abwertung der KI verwandelt. So werden in ARD und ZDF Titel für Beiträge zur KI verwendet, die dies nahe legen: Künstliche Intelligenz- Besser als wir? [1] oder Better than human – Leben mit KI [2]

Die Inhalte der Beiträge [1] und [2] sind hingegen sehr professionell und sehr zu empfehlen: Sie zeigen beide das Potential einer hybriden Collective Intelligence, also der Erweiterung unserer Intelligenz durch KI.  In [2] wird die Kommunikation mit einer KI getestet, die in drei Rollen mit Menschen kommuniziert: der Rolle eines Pfarrer, einer Psychotherapeutin und einer besten Freundin. Die Resonanz ist erstaunlich gut: Es kommt sogar zu Aussagen wie ‚KI hilft mir bei meiner Einsamkeit‘ und ‚KI verbindet Menschen‘.

In das Abwertungs-Horn stoßen einige meiner Kollegen mit ihren Beiträgen auf LinkedIn: KI ist monokontexturale Mustererkennung… [3] KI ist dumm und zu konventionell für unsere Transformation [4].

In [2] sagt einer der KI-Experten, dass KI nichts anderes ist als Statistik. – Auch hier schwingt die Abwertung mit. – Wenngleich die Aussage korrekt ist: KI ist Mustererkennung auf der Basis von sehr vielen Daten bzw. ‚Daten-Wahrnehmungen‘.

In einem anderen LinkedIn Beitrag – die Referenz habe ich vergesse – sagt der Autor, dass KI nichts anderes ist als Statistik und wir Menschen doch in der Läge wären Ursache-Wirkungs-Zusammenhänge zu erkennen. Damit würden wir über eine viel höherwertige Form von Intelligenz verfügen. Ich frage mich, was ist das Erkennen von Ursache-Wirkungs-Zusammenhänge denn Anderes als Mustererkennung auf der Basis von sehr vielen ähnlichen Wahrnehmungen. 

Ich werfe im Folgenden ein paar Fragen auf und verbinde mit diesen eine These: Wissen wir was unsere Intelligenz ist? Könnte es sein, dass unsere kognitive Intelligenz im Wesentlichen nichts anderes ist als Statistik? Falls eine KI den gleichen Intelligenztest besteht wie wir ihn auch für die IQ Bestimmung bei Menschen benutzen, ist dies dann ein starker Hinweis für die Aussage, dass unsere kognitive Intelligenz auch nicht viel mehr oder weniger ist als die künstliche Intelligenz? Kann es sein, dass wir aufgrund der überwältigenden KI-Fähigkeiten unseren Selbstwertschutz aktivieren und die KI abwerten, um unseren Selbstwert zu erhöhen?

Ich formuliere meinen Glaubenssatz als These: Ich glaube, dass die prinzipiellen Unterschiede zwischen unserer kognitiven Intelligenz, wie sie in einem IQ-Test gemessen wird, und der künstlichen Intelligenz nicht groß sind. – Und wir sollten deswegen kein Selbstwertproblem haben, im Gegenteil: Die bisherigen Mechanismen der KI – und wir sind noch lange nicht am Ende – wurden von uns gefunden! – Gefunden heißt, ich glaube, dass die grundlegenden Prinzipien, die Intelligenz hervorbringen, unabhängig sind vom Substrat, das sie erzeugt: Die Implementierung einer KI unterscheidet sich sicherlich in nahezu allem von der biologischen Intelligenz Implementierung. Ich glaube jedoch, dass die dahinterliegenden Prinzipien in beiden Fällen ähnlich oder sogar gleich sind. Und genau dies ist das Wunder, das wir vielfach noch nicht begriffen haben: Die komplizierten mathematischen Mechanismen einer GPT erzeugen Komplexität, die Selbstorganisation möglich macht, die dann zu den emergenten Phänomenen der künstlichen Intelligenz führen.

In diesem positiven Sinne habe ich myGini – meinen Coach für Team- und Projekt-Management mittels chatGPTplus erzeugt. myGini soll helfen, den Weg zu den umfangreichen Modellen und Theorien von Management 4.0 zu erleichtern. myGini erweitert damit die Intelligenz des Nutzers in Fragen von Team- und Projekt-Management zu einer hybriden Collective Intelligence.

myGini ist eine von mehreren hundert öffentlich verfügbaren GPTapps oder ChatBots. Öffentlich verfügbar bedeutet, dass man auf die GPTapps zugreifen kann, wenn man ein chatGPTplus Konto hat. Die Aussage, dass es schon Millionen von GPTapps gibt, kann ich nicht bestätigen. Öffentlich sichtbar sind lediglich nach meiner Einschätzung einige hundert. Und das sind schon viele, da es schwer ist zu wissen, was die GPTapps können. Es gibt schon einige GPTapps, die sich dem Thema Projektmanagement widmen, jedoch kann man nicht wirklich leicht feststellen, was sie können. – Die Benutzeroberfläche der GPTapps, wie sie von openai standardmäßig bereitgestellt wird (siehe rechte Seite in Abbildung 1), ist sicherlich verbesserungswürdig: Eine intelligente Oberfläche, die einem sagt, was die GPTapp weiss oder kann, wäre sehr hilfreich!

Ich hatte schon vor Jahren die Idee eine App zu erstellen, die Management 4.0 leichter verfügbar machen sollte. Damals habe ich eine Excel-Datei mit Bayes Wahrscheinlichkeitsberechnungen erstellt, um aufgrund von Beobachtungen die Wahrscheinlichkeiten für MBTI-Persönlichkeitspräferenzen ermitteln zu lassen.- Ein Mechanismus ähnlichem dem, wie wir selbst mit jeder Beobachtung zu neuen Hypothesen bezüglich der Persönlichkeit unserer Mitmenschen gelangen. Das Verfahren funktioniert sehr gut, jedoch ist es unhandlich. Außerdem fehlte auch noch eine Umsetzung in eine App.

Ein großer Schritt geschah, als ich vor ca. 3 Jahren meine erste GPT Anwendung mittels BERT und Python erstellte. Auch in diesem Fall konnte ich zeigen, dass die GPT Anwendung funktioniert. Aber ich stand vor dem Problem Daten zu beschaffen, um damit die GPT Anwendung zu trainieren. Also habe ich auch dies verworfen.

Mit dem jetzigen  Angebot von openai,  eine eigene GPT Anwendung zu erstellen, ist meine Idee Realität geworden.

Abbildung 1 zeigt die Entwicklungsumgebung für myGini (links) und die Anwendungsumgebung als Preview (rechts), so wie ein Anwender myGini in chatGPTplus sieht.

Abbildung 1: Die Entwicklungsumgebung für myGini (links) und die Nutzerumgebung als Preview (rechts)

Ich benutze den Begriff GPTapp, um zu unterstreichen, dass ich chatGPTplus/GPT4.0 nicht mit meinen Daten trainieren kann. chatGPTplus leitet mich hingegen mit einfachen Anweisungen an, zu definieren, welche Funktionen meine GPTapp haben soll: Ich kann ein Profilbild mittels DALL.E generieren lassen, sagen welche Modelle ich verwende (MBTI, Big Five, Spiral Dynamics, Dilts Pyramide, Theorie der Selbstorganisation….) sowie in welchen Büchern die Theorie zu Management 4.0 zu finden ist und welche Internetseiten weitere Informationen enthalten. Auf dieser Basis wird die GPTapp zusammengestellt.

Ich wollte überprüfen, ob myGini tatsächlich meine/unsere Bücher kennt, indem ich nach speziellen Textpassagen frage. Dies wurde von chatGPTplus abgelehnt, da myGini aufgrund von Urheberrechten nur Prinzipien, aber keine Textpassagen, wiedergibt.

Einige Tests zur Fähigkeit das MBTI- oder Big Five-Profil einer Person aufgrund meiner Beschreibungen zu deren Verhaltensweisen zu ermitteln, hat myGini mit Bravour bestanden. Die erste Konfiguration von myGini mit dem MBTI- und Big Five-Modell hat ca. 0,5 Stunden benötigt. – Hier ist natürlich nicht die openai GPT Trainingszeit mitgerecht. Die Erfahrung zeigt, dass  ein Mensch ca. 3 Monate intensives Training benötigt, um innerhalb weniger Sekunden/Minuten in einem Gespräch souverän erste Hypothesen zu den Persönlichkeitspräferenzen des Gesprächspartners abzugeben.

Die nachfolgenden Beispiele zeigen sehr deutlich, dass chatGPTplus bzw. myGini erstaunliche Ergebnisse und abgeleitete Zusammenhänge liefert: myGini ist eine Form von AI-M4.0 Experte, dessen Expertentum ich mit meinen Create-Informationen gebildet habe. 

Als erstes Beispiel benutze ich die rechts in Abbildung 1 vorkonfektionierte Frage ‚How do I use MBTI in team management?  

Du

How do I use MBTI in team management?

myGini

Using MBTI (Myers-Briggs Type Indicator) in team management can be quite beneficial for understanding the diverse personalities within your team and enhancing overall team dynamics. Here’s a structured approach on how to use MBTI in your team management practices:

  1. Conduct MBTI Assessments: Start by having each team member complete the MBTI assessment. This will categorize them into one of the 16 personality types based on four dichotomies: Introversion/Extraversion, Sensing/Intuition, Thinking/Feeling, and Judging/Perceiving.
  2. Share and Discuss Results: Organize a team session to share and discuss the results. This fosters openness and helps team members understand each other’s personalities, communication styles, and work preferences.
  3. Identify Team Composition: Analyze the spread of personality types within your team. This will give you insights into the team’s strengths, potential blind spots, and how different members might interact.
  4. Adapt Communication and Work Styles: Tailor your communication and management approach based on the team’s MBTI composition. For example, if you have many introverts, ensure they have quiet time for deep work, or if there are several Thinking types, focus on logical and objective decision-making processes.
  5. Enhance Team Collaboration: Use MBTI insights to facilitate better teamwork. For instance, pair Thinking types with Feeling types to balance decision-making, or Sensing types with Intuitive types to cover both practical and innovative aspects of a project.
  6. Conflict Resolution: Understanding different MBTI types can help in resolving conflicts. Recognize that different types handle conflicts differently – some may prefer direct confrontation, while others might need time to process.
  7. Tailor Development Opportunities: Offer personal development opportunities that align with each member’s MBTI type. This can include training, workshops, or mentoring that caters to their personality strengths and development areas.
  8. Monitor and Adjust: Regularly revisit the MBTI dynamics in your team, especially when new members join or when teams are restructured. Be open to adjusting your management strategies as the team evolves.

Remember, while MBTI is a useful tool, it should be used as a guide rather than a strict rulebook. Personalities can be fluid, and people may exhibit different traits in different situations. The key is to use MBTI to gain a deeper understanding of your team members and to create a more harmonious and effective work environment.

Das Ergebnis ist perfekt: Besser hätte ich es auch nicht machen können. Was mir auch auffällt ist, dass ich keine Textpassagen identifizieren kann, die aus einem unserer Bücher kopiert wurden. Vielfach sind die Formulierungen sogar besser als ich sie vorgenommen hätte.

Das nachfolgende Beispiel beruht auf der Eingabe eines Satzes in der Entwicklungsumgebung zur Aufnahme der Theorie der Selbstorganistion nach Herrmann Haken (Synergetik), man siehe Abbildung 1, linke Seite. – myGini antwortet zuerst immer in Englisch. Bleibe ich bei Deutsch, erfolgt der Übergang zu Deutsch:

Du

Ich möchte den agilen Handlungsrahmen Scrum mittels der Synergetik analysieren. Kannst Du mir sagen, auf welche Weise Rahmenparameter, Kontrollparameter und Ordnungsparameter in Scrum erfüllt werden?

myGini

Die Analyse des agilen Handlungsrahmens Scrum unter Anwendung der Prinzipien der Synergetik bietet eine interessante Perspektive auf die Teamdynamik und -organisation. In der Synergetik, die sich mit der Selbstorganisation komplexer Systeme beschäftigt, sind Rahmenparameter, Kontrollparameter und Ordnungsparameter zentrale Konzepte. Lassen Sie uns betrachten, wie diese Konzepte in einem Scrum-Umfeld angewendet werden können:

  1. Rahmenparameter (Boundary Conditions): Diese definieren die grundlegenden Bedingungen und Einschränkungen eines Systems. In Scrum beziehen sich die Rahmenparameter auf die grundlegenden Prinzipien und Praktiken des Scrum-Frameworks, wie die Rollen (Product Owner, Scrum Master, Entwicklungsteam), Artefakte (Product Backlog, Sprint Backlog, Inkrement) und Ereignisse (Sprint, Daily Scrum, Sprint Review, Sprint Retrospektive). Diese Rahmenbedingungen schaffen ein Umfeld, in dem Selbstorganisation und agile Entwicklung gedeihen können.
  2. Kontrollparameter (Control Parameters): Kontrollparameter sind die Variablen, die den Zustand des Systems beeinflussen und zu einer neuen Ordnung führen können. In Scrum können dies Elemente wie die Sprintlänge, die Priorisierung im Product Backlog, die Teamzusammensetzung oder die Definition of Done (DoD) sein. Die Anpassung dieser Parameter während des Projekts kann die Teamdynamik und die Produktivität erheblich beeinflussen und zu einer effektiveren Selbstorganisation führen.
  3. Ordnungsparameter (Order Parameters): Ordnungsparameter entstehen spontan als Ergebnis der Interaktionen innerhalb des Systems und führen zu einer kohärenten Struktur oder einem Muster. In einem Scrum-Team können Ordnungsparameter Aspekte wie Teamnormen, Kommunikationsmuster, gemeinsame Werte oder die sich entwickelnde Teamkultur sein. Diese emergenten Eigenschaften reflektieren die innere Ordnung des Teams und sind oft ein direktes Ergebnis der Wechselwirkung zwischen Rahmen- und Kontrollparametern.

Um Scrum erfolgreich durch die Linse der Synergetik zu analysieren, ist es wichtig, ein tiefes Verständnis dafür zu entwickeln, wie diese Parameter interagieren und wie Anpassungen an einem Punkt des Systems die Gesamtdynamik beeinflussen können. Dies erfordert eine flexible und adaptive Haltung vom Scrum Master und dem Team, um die Selbstorganisation zu fördern und gleichzeitig die Produktivität und Effektivität des Teams zu maximieren.

Du

Was hältst Du davon neben den Dir genannten Parameterausprägungen folgende zu nennen: Rahmenparameter: Abschottung von externer Komplexität, Rituale Kontrollparameter: Work in Progress (WIP), persönlichkeitsorientierte Kommunikation Ordnungsparameter: Produktvision, Product Goal und auch das Taskboard

myGini

Ihre Ergänzungen zu den Rahmen-, Kontroll- und Ordnungsparametern in der Anwendung von Scrum durch die Synergetik-Perspektive sind durchaus sinnvoll und bereichern das Verständnis der Selbstorganisationsdynamik in agilen Teams. Lassen Sie uns diese Parameter genauer betrachten:

  1. Rahmenparameter:
    • Abschottung von externer Komplexität: Dies ist ein wichtiger Aspekt, der sicherstellt, dass das Team sich auf seine Aufgaben konzentrieren kann, ohne von externen Störungen oder sich ständig ändernden Anforderungen abgelenkt zu werden. In Scrum hilft diese Abschottung dabei, ein stabiles Arbeitsumfeld zu schaffen, in dem das Team effizient arbeiten und sich selbst organisieren kann.
    • Rituale: Scrum-Praktiken wie Daily Stand-ups, Sprint Planning, Reviews und Retrospektiven sind entscheidende Rituale. Diese strukturierten Ereignisse fördern die Klarheit, Fokussierung und regelmäßige Reflexion, die für die Aufrechterhaltung und Verbesserung der Teamdynamik und -effektivität unerlässlich sind.
  2. Kontrollparameter:
    • Work in Progress (WIP): Die Begrenzung des Work in Progress ist entscheidend für die Aufrechterhaltung der Effizienz und Effektivität des Teams. Durch die Kontrolle und Anpassung des WIP können Teams Überlastung vermeiden und eine kontinuierliche und gleichmäßige Arbeitsflussgeschwindigkeit sicherstellen.
    • Persönlichkeitsorientierte Kommunikation: Die Anpassung der Kommunikationsstile und -methoden an die individuellen Persönlichkeiten im Team kann die Zusammenarbeit und das Verständnis innerhalb des Teams erheblich verbessern. Dieser Ansatz trägt dazu bei, Missverständnisse zu reduzieren und eine positive Teamdynamik zu fördern.
  3. Ordnungsparameter:
    • Produktvision und Product Goal: Diese geben die Richtung und den Zweck des Teams vor und sind entscheidend für die Ausrichtung und Motivation des Teams. Sie dienen als Leitfaden für Entscheidungen und Priorisierungen und helfen, die Bemühungen des Teams auf ein gemeinsames Ziel zu konzentrieren.
    • Taskboard: Das Taskboard ist ein visuelles Werkzeug, das nicht nur den Fortschritt und die aktuelle Arbeitslast darstellt, sondern auch zur Strukturierung der Teamaktivitäten und zur Förderung der Transparenz beiträgt. Es ist ein zentraler Bestandteil der Selbstorganisation, da es die Koordination und die Zusammenarbeit innerhalb des Teams erleichtert.
    Insgesamt bieten Ihre vorgeschlagenen Parameterausprägungen eine umfassendere Sicht auf die Anwendung von Scrum in einem selbstorganisierenden Team. Sie betonen die Bedeutung der Abschirmung vor externen Störungen, der Anpassung der Kommunikation an individuelle Bedürfnisse und der zentralen Rolle von Vision, Zielen und visuellen Tools bei der Förderung von Teamkohärenz und -ausrichtung. Diese Aspekte sind entscheidend für die Schaffung eines Umfelds, in dem agile Teams effektiv arbeiten und sich selbst organisieren können, im Einklang mit den Prinzipien der Synergetik.

Du

Perfekt, super hilfreich!

myGini

Das freut mich zu hören! Wenn Sie weitere Fragen haben oder Unterstützung bei einem anderen Thema benötigen, zögern Sie nicht, mich zu fragen. Viel Erfolg bei Ihren Projekten und in der Anwendung von Scrum!

Wie man aus diesen Beispielen sehen kann, erzeugt diese ‚statistische‘ 😉 Künstliche Intelligenz Antworten, die den Antworten eines Senior-Experten in nichts nachstehen.

Es ist deshalb sehr müßig, AI-Systeme als dumm zu bezeichnen, denn dann müsste man uns Menschen auch als dumm bezeichnen. – Was alles in allem wenig hilfreich ist und allenfalls unser ‚gekränktes‘ Selbstwertgefühl aufwertet.

Neben den Gefahren, die mit der Erstellung von GPTapps einhergehen können –  man siehe als Beispiel [5] – sehe ich ein viel größeres strukturelles Problem: Kann es sein, dass wir mit der flächendeckenden Verfügbarkeit von GPTapps immer träger und dümmer werden? Denn warum sollte ich mich noch den Mühen eines M4.0-Verständnisse oder den Mühen der Mathematik oder den Mühen des Programmierens oder…oder… aussetzen, wenn mir die gebratenen Tauben in Form von GPTapps in den Mund fliegen. Kann es sein, dass wir eine Bildungsungleichheit befeuern, in der nur noch wenige wissen, wie man AI-Systeme erstellt und der traurige Rest an Milliarden von Menschen nur noch konsumiert? Kann es sein, dass die GPTapps jede Form von erdenkbarem Missbrauch möglich machen? – Denn wer sagt uns, dass die GPTapp-Ersteller zum Wohl der Milliarden anderen Menschen handeln?

Eine neue Zeit ist angebrochen! Den Zug der KI-Innovationen zu stoppen, ist für mich keine Option. -Statt dessen ist ein Aufbruch erforderlich, der den Milliarden KI-Nutzern den souveränen Umgang mit der Technologie vermittelt.  

[1] ZDF (2023) Künstliche Intelligenz – Besser als wir? – Weltspiegel Doku – ZDFmediathek, https://www.zdf.de/daserste/weltspiegel/page-video-ard-kuenstliche-intelligenz–besser-als-wir—weltspiegel-doku-100.html

[2] MDR (2023) Better than human – Leben mit KI, https://www.ardmediathek.de/video/ard-wissen/better-than-human-leben-mit-ki/das-erste/Y3JpZDovL21kci5kZS9zZW5kdW5nLzI4MjA0MS8yMDIzMTIyOTA2MDAvbWRycGx1cy1zZW5kdW5nLTc4NzI

[3] Detholff C (2024) #KI ist monokontexturale Mustererkennung, denn … , https://www.linkedin.com/posts/conny-dethloff-6b9b0942_ki-innovation-lernen-activity-7150711017889509376-nplL/?utm_source=share&utm_medium=member_ios

[4] Hofert S (2024) KI ist dumm und zu konventionell für unsere Transformation!, https://www.linkedin.com/posts/svenjahofert_bigfive-vertikalenentwicklung-wust-activity-7151513159051161600-fRwu?utm_source=share&utm_medium=member_desktop

[5] Petereit D (2024) OpenAIs GPT-Store: Girlfriend-Bots zeigen die Probleme des offenen KI-Shops auf, https://t3n.de/news/openais-gt-store-girlfriend-bots-zeigen-die-probleme-des-offenen-ki-shops-auf-1601980/

Rückwärtsgewandt in den Abgrund…oder… Entwickeln wir uns weiter!?

Die Geschehnisse der letzten Jahre machen mich mehr als nur besorgt: Die massive Schädigung der Natur durch uns, die Pandemie Corona, der Überfall Russlands auf die Ukraine, der Terrorakt der Hamas gegenüber Israel, das Umsichgreifen der verfassungsfeindlichen, antidemokratischen AfD, der schleichende Rückzug der Demokratie in den USA und in Europa, der Antisemitismus von rechts, links und Islamisten, die Missbrauchsskandale in der katholischen Kirche sowie die vielen Naturkatastrophen, Kriege und Terrorakte an die wir uns schon gewöhnt haben oder die keine mediale und persönliche Aufmerksamkeit erhalten.

Es macht mich umso besorgter, als dass wir in Europa glaubten, wir hätten die dunkle Seite der Vergangenheit hinter uns gelassen.

Dieser Blog-Beitrag wird stark motiviert durch einen Beitrag auf LinkedIn [1], in dem angeregt wird, dass die Diskussion um den sogenannten Purpose (Zweck/Sinn) eines Unternehmens unnötig sei, da alleine der Profit das Entscheidende sei, um das Unternehmen am Leben zu erhalten. Nicht wenige aus der Agilen Community haben dieser Aussage zugestimmt. Ich habe daraufhin folgenden Kommentar angefügt:

„Ich bin erschrocken, als ich gelesen habe, dass einige meiner Kolleg:innen, die Transformationen begleiten, der Aussage „Ein Purpose ist für Unternehmen ein Handicap!“ zustimmen und diese Aussage sogar mit der Aussage „Um zu überleben, müssen sie sich auf den Profit konzentrieren.“ verstärken. Stafford Beer als Beleg hierfür anzuführen, macht die Aussagen zu gedanklichen Irrlichtern. – Ich schließe mich der Aussage von Christian Mueller-Bagehl an: „Solche Beiträge passen aus meiner Sicht intellektuell nicht mehr in die Zeit. Sie befördern gegebenenfalls unethisches Verhalten!“ Warum?

Das Zitat von Stafford Beer hat nichts mit der Aussage zu tun, dass Organisationen keinen Purpose/Zweck/Sinn benötigen, sondern ist die Aussage, dass jedes System sich durch Selbstreferentialität ausbildet. D.H. auch u.a., dass man keiner Organisation einen Purpose/Zweck/Sinn aufsetzen kann (wie vermeintlich von nicht wenigen Vorständen/Coaches angenommen), er bildet sich vielmehr von alleine. In der Theorie der Selbstorganisation bezeichnet man die Größe, die eine sich selbständig ausbildende Ausrichtung eines Systems hervorruft, als Ordnungsparameter. – Jedes System hat einen Ordnungsparameter bzw. eine Ordnungsparameter-Hierarchie. So gibt es sicherlich Organisationen, die Geld bzw. Profit, also nicht nur eine Werterzeugung, als obersten Ordnungsparameter haben. Die Mafia gehört meines Erachtens dazu und die Deutsche Bank in der Ära Ackermann’s mit 25% Rendite gehörte auch dazu. Organisationen auf den Ordnungsparameter Profit zu reduzieren, ist meines Erachtens zutiefst kapitalistisch/neoliberal – mit all den Konsequenzen, die wir heute im Klimawandel, der Zerstörung der Natur aber auch in dem Egoismus von Gesellschaften und Individuen sehen. – Es ist eine der großen Errungenschaften des agilen Denkens, den Ordnungsparameter Profit (fast) von seinem Thron gestoßen zu haben. – Ich hoffe, der Thron wird nicht wieder errichtet.“

Was hat dieses, vielleicht auf den ersten Blick, eher harmlose Thema mit den doch sehr viel dramatischeren und schwerwiegenden Welt-Ereignissen zu tun? Ich glaube einiges und ich werde im Folgenden versuchen dies sichtbar zu machen.

Das World Economic Forum hat im Januar seinen World Risks Report rausgebracht. Abbildung 1 zeigt das globale Risikoportfolio auf der Basis von Befragungen: Man darf vermuten, dass die Größe der Kreise nicht dem jeweiligen Risikowert (= potentieller Schaden*Eintrittswahrscheinlichkeit) entsprechen und damit meines Erachtens in nicht wenigen Fällen eine Verharmlosung des jeweiligen Risikos ausdrücken. – Gleichwohl ist der World Risks Report ein wichtiges Dokument. – Mir ist nicht bekannt, dass es auf der Ebene der EU oder Deutschlands eine vergleichbare Risikoportfolioanalyse gibt bzw. öffentlich zugänglich ist. – Aus dem Projektmanagement weiß man, dass proaktives Risikomanagement ein Augenöffner für den Umgang mit Unsicherheit ist und komplexe Projekte erst erfolgreich durchführen lässt.

Abbildung 1: World Economic Forum, Global Risks Perception Survey 2022-2023 [2] – Vergrößern über rechte Maustaste

Diese Risikomap und die eingetretenen Geschehnisse der letzten Jahre werfen bei mir folgende, beunruhigende Frage auf: Bewegen wir uns rückwärtsgewandt auf einen oder sogar mehrere globale Abgründe zu?

In dem Spiegel-Beitrag aus dem Jahre 2021 „Der unvermeidliche Weg in eine grüne Zukunft“ [3] skizziert Stefan Schultz, kurz vor der letzten Bundestagswahl, das Kultur- und Bewusstsein-Entwicklungsmodell Spiral Dynamics [4,5]: Egal wer die Bundestagswahl gewinnt, unser Weg in die Zukunft ist grün, auch wenn dieser Weg über (lange) Umwege (z.B. CDU) dorthin führt. Hiermit bringt er die Beobachtung zum Ausdruck, dass die menschliche Entwicklung über Jahrtausende hinweg zu immer höheren Kultur- und Bewusstseinsstufen erfolgte. Die in Europa anstehende nächste vorherrschende Bewusstseinsstufe wird in Spiral Dynamics mit der Farbe grün gekennzeichnet.

Leider ist es nicht so, dass unsere persönliche und gesellschaftliche Entwicklung zwangsläufig immer in Richtung einer höheren Entwicklungsstufe verläuft. Ein Blick in die Geschichte zeigt dies: Die Zeit des Nazi-Deutschlands war ein gewaltiger Rückschritt, das Auftauchen der AfD ist ebenfalls ein großer Rückschritt. Entwicklung in Jahrhunderten oder -Tausenden gezählt, erfolgte bisher immer zu höheren Entwicklungsstufen, jedoch auf Zeitskalen von Jahrzehnten können erhebliche Rückschritte eintreten. Auf das Spiegel-Beispiel übertragen, könnte dies im Angesicht des Klimawandels heißen, dass eine höhere Kultur- und Bewusstseinsstufe zu spät kommt! 

Das Spiral Dynamics Modell kennzeichnet die Entwicklung von Menschen, Gruppen, Organisationen oder Gesellschaften durch sogenannte value-Meme, kurz v-Meme. V-Meme sind Gedankenschnipsel, Werte, Glaubenssätze oder Grundannahmen, die das Verhalten von Individuen, Gruppen, Organisationen oder Gesellschaften beschreiben. Nach Spiral Dynamics wird unsere Entwicklung durch verschiedene v-Mem Typen beschrieben. Die v-Mem-Typen fassen ähnliche Mem-Erscheinungsformen zusammen und werden durch einen Farbcode gekennzeichnet. Man siehe Abbildung 2.

Abbildung 2: Oben links ist eine Darstellung der derzeit sichtbaren Entwicklungsstufen sowie deren Beziehung zu den vier Grundbedürfnissen gemäß der Neuropsychotherapie [6, 7] zu sehen. Unten links ist die Spiral Darstellung nach Don Beck [8] enthalten. – Die vordere Zahl gibt an, wie viel Prozent der Weltbevölkerung sich (Stand Anfang des 21. Jahrhunderts) auf der jeweiligen höchsten Entwicklungsstufe befindet, die hintere, wie hoch der Anteil des gesellschaftlichen Einflusses der Entwicklungsstufe ist. Das rechte Bild zeigt die globale Entwicklung von Gesellschaften, dargestellt mittels v-Mem Verteilungen [9]. – Vergrößern über rechte Maustaste

Die Entwicklung wird (vereinfacht) durch die jeweils höchste v-Mem Stufe gekennzeichnet. Wobei diese höchste Entwicklungsstufe die darunter liegenden Stufen integriert: Es liegt tatsächlich eine Mischung von v-Memen vor. Diese ist charakteristisch für einen Menschen, eine Gruppe, eine Organisation oder eine Gesellschaft zum jeweiligen Betrachtungs-Zeitpunkt. Das sogenannte ‚center of gravity‘ berücksichtigt den v-Mem Schwerpunkt innerhalb eines Menschen oder innerhalb eines sozialen Systems, und kann damit von der höchsten erreichten Entwicklungsstufe stark abweichen.

Bezüglich der Verbindung von Spiral Dynamics (und der Integralen Theorie) zur Gesellschaftstheorie/Soziologie und Politik verweise ich auf die sehr lesenswerte Magisterarbeit von David Kriegleder [10]. Für einen aktuelle Eindruck von der Bedeutung von Spiral Dynamics im politischen Raum verweise ich auf [4, 5, 11, 12, 13].

Das Spiral Dynamics Modell ist ein zentrales Modell im Management 4.0. Ich habe im Laufe der letzten Jahre mehrmals dieses Modell in diesem Blog verwendet, um Führungs-, Team oder Gesellschaftsfragestellungen zu behandeln:

Der Blog-Beitrag ‚Cultural Entropy: Corona deckt unsere Werte auf!‘ [14] vom März 2020 zeigt anhand von Spiral Dynamics und dem Barrett Value Modell das limitierende Potential von Werten auf: Die stark limitierenden v-Meme Purpur (Mystik), Rot (Macht), Blau (Ordnung) haben in allen westlichen Gesellschaftsschichten eine ähnliche Verteilung. – Bildung und Wohlstand begrenzen leider nicht unmittelbar die Verbreitung limitierender v-Meme.

Der Blog-Beitrag ‚Projekt-Controlling, alles eine Frage der richtigen Werkzeuge!?‘ [15] vom März 2019 zeigt den Zusammenhang von Spiral Dynamics und den vier Grundbedürfnissen des Menschen gemäß Neuropsychotherapie-Erkenntnissen auf. Das rot v-Mem lässt sich dem Grundbedürfnis nach Selbstwertschutz und -Erhöhung zuordnen, das blaue v-Mem wird dem Grundbedürfnis nach Orientierung und Kontrolle zugeordnet, das orange v-Mem lässt sich dem Grundbedürfnis nach Lustgewinn und Unlustvermeidung zuordnen und das grüne v-Mem wird dem Grundbedürfnis nach Bindung zugeordnet. Ein traditionelles Mindset verorten wir in der Dominanz von rotem v-Mem (Macht, Status) und blauem v-Mem (Ordnung, Kontrolle und Sicherheit). Ein agiles Mindset ist ein Mindset, in dem Offenheit, Neugier und Respekt vor Mensch, Tier und Natur vorherrschen. – Wir verorten hier die orangen und grünen v-Meme.
Hass und Gewalt entwickeln sich aus einer sehr großen Dominanz von mythischen, roten und blauen v-Memen: Wenn Macht und Status sowie Ordnung und Kontrolle aus Sicht der jeweiligen Personen oder Gruppen drohen verloren zu gehen oder schon verloren gegangen sind, entfalten limitierende v-Meme ihre destruktive Wirkung.   

Der Blog-Beitrag ‚Gesellschaftlicher Wandel – Sein oder Nichtsein?- Das ist hier die Frage!‘ [16] vom Mai 2020 skizziert die v-Mem-Struktur der amerikanischen und deutschen Gesellschaft. In beiden Gesellschaften zeigen ca. 40% der Bevölkerung eine höchste Entwicklungsstufe, die durch die limitierenden v-Meme bestimmt wird. – In den USA ist der Anteil sogar größer als in Europa. (man siehe auch Abbildung 2, rechts).

Der Blog-Beitrag ‚Governance: Die hohe Kunst der Führung von Gesellschaft, Unternehmen und Projekten‘ [17] vom September 2018 zeigt, dass Führung entsteht, wenn die v-Meme des Führenden mit den v-Memen des oder der Geführten in Resonanz treten. Führende die lediglich über limitierende v-Meme verfügen, sprechen auch nur Personen mit limitierenden Werten an.

Der Blog-Beitrag ‚Projekte neu gedacht: Entwicklungsstufen, Selbstorganisation und Co-Evolution‘ [18] vom Februar 2019 zeigt, dass eine hohe individuelle Bewusstseinsstufe notwendig ist, um mit Komplexität und daraus resultierender Unsicherheit umgehen zu können. Die individuelle Bewusstseinsstufe kann jedoch keine Wirksamkeit entfalten, wenn der Kontext (die Kultur der Organisation oder Gesellschaft und die verfügbaren Technologien) dies nicht möglich macht.

Berücksichtigen wir all die oben genannten Erkenntnisse, so ergeben sich folgende Aussagen für die oben genannten Geschehnisse und Risiken:

In Deutschland (und Europa) macht die Angst vor dem Verlust von Selbstwirksamkeit (Wohlstandsverlust, Verlust an Macht und Status) und die Angst vor Unsicherheit (Verlust an Ordnungs- und Sicherheitsgefühl) die purpurnen, roten und blauen v-Meme wieder sichtbar: Sie waren in den letzten Jahrzehnten nicht verschwunden, sie werden nur jetzt wieder sichtbar. Dies erklärt meines Erachtens das Auftauchen von Verschwörungstheorien, das Erstarken der AfD, den Antisemitismus, die Fremdenfeindlichkeit sowie das permanente Ausweichen vor schnellen und konsequenten Klimaschutzmaßnahmen. Der Glaube an Markt und Technologie, ausgedrückt im orangen v-Mem, ist leider nicht hilfreich, sondern trägt zum Erstarken der v-Meme mit limitierendem Potential bei. Im integralen Verständnis muss es die Aufgabe der grünen (und orangen) v-Meme sein, mit geeigneten Mitteln, Gesellschaftsgruppen mit purpurnen, roten und blauen v-Memen die Angst vor Wohlstands- und Sicherheitsverlust zu nehmen: Dies wird tragischerweise wahrscheinlich auch heißen müssen, dass die durch Migration hervorgerufene Komplexität reguliert wird: Migranten mit limitierenden v-Memen führen zu einem Erstarken von europäischen Gesellschaftsgruppen mit ebenfalls limitierenden v-Memen. Zusätzlich ist es notwendig alle Themen, die die Selbstwirksamkeit einschränken, mit äußerster Vorsicht zu handhaben.  

In anderen Gesellschaften, wie Russland oder im islamischen Raum, sind die Gesellschaftsanteile mit limitierenden v-Memen deutlich höher als in Europa (man siehe Abbildung 2). – Bezüglich Russlands verweise ich auf das gerade erschienene Buch von Olaf Kühl [19]. Dies wiegt umso schwerer, als die Führung in solchen Ländern selbst durch limitierende v-Meme geleitet wird und aufgrund des oben geschilderten Führungs-Resonanzeffektes die Entwicklung zu höheren Kultur- und Bewusstseinsstufen verhindert. –  Mögliche individuelle oder gesellschaftliche orangene, grüne oder höhere v-Meme haben keine Chancen der Wirksamkeit. Wie die Fehleinschätzung zu Putin zeigt, ist es erforderlich keine naiven Politik-Glaubensätze wie ‚Wandel durch Handel‘ (dies ist ein typisches orangenes Mem mit blauen und roten Anteilen) zu verfolgen, sondern komplexere Strategien, die die oben genannten Zusammenhänge berücksichtigen.

Unsere Gesellschaft differenziert sich immer weiter aus – dies gilt global: Es entstehen durch Selbstorganisation viele unterschiedliche Gruppierungen. Die jeweilige Führung tritt mit ihren jeweiligen v-Memen in Resonanz mit (zukünftigen) Mitgliedern der Gesellschaftsgruppe. Falls die v-Meme einen stark limitierenden Charakter haben, bilden sich auch Ziele als Ordnungsparameter heraus, die diesen limitierenden v-Memen entsprechen. Rahmenparameter wie Ausgrenzung und Isolation verstärken diese Mechanismen noch. Wer sich mit der Selbstorganisation von Organisationen beschäftigt hat, wird diesen Prozess bestätigen können.

Die limitierenden v-Meme erzeugen eine sehr destruktive Kraft, wenn psychische Störungen und/oder traumatische Erlebnisse für Individuum oder für Völker hinzukommen. Im Israel-Palästina Konflikt können wir dies beobachten. Die Israelis sind als Volk durch den Holokaust traumatisiert, die Palästinenser durch die jahrzehntelange Ausgrenzung. Israel hat als Volk eine westliche v-Mem Struktur, auch wenn starke Gruppierungen mit einer limitierenden v-Mem-Struktur zurzeit die Politik bestimmen. Ich gehe davon aus, dass das ‚center of gravity‘ der palästinensischen v-Mem Struktur eher limitierenden Charakter hat. Beide Völker werden meines Erachtens durch Personen vertreten, die keine integrierenden v-Meme erkennen lassen, sondern vielmehr limitierende v-Meme. Dies ist ein Kontext, der einen idealen Nährboden für das Entstehen und Bestehen der Terrororganisation Hamas darstellt.        

Ich komme zurück zu meinem LinkedIn Kommentar: Meines Erachtens lässt die Aussage, dass Unternehmen keinen Zweck/Sinn (Purpose) benötigen, sondern, dass der Profit als Ordnungsparameter völlig genügt, limitierende v-Meme erkennen. Schaut man sich den genauen Wortlaut, auch in den bejahenden Kommentaren an, so zeigt die Aussage, orange v-Meme unterlegt mit blauen und teilweise sogar roten v-Memen. Das merkliche Auftauchen des grünen v-Mems in unserer Gesellschaft hat die Einführung des Purpose ermöglicht und gehört heute elementar zum agilen und komplexitäts-meisternden Handeln.– Deshalb wiegt die Aussage zum Streichen des Purpose umso schwerer, als die kommentierenden und bejahenden Personen zur Agilen Community gehören. An diesem Beispiel kann man sehen, dass rückwärtsgewandtes Denken und Handeln auch in vermeintlich einfachen Zusammenhängen auftreten können. – Tragisch wird es, wenn eine Mehrheit immer öfter rückwärtsgewandtes Handeln und Denken erkennen lässt. – Dann ist es nämlich tatsächlich zu spät für uns!

[1] Oswald A (2023) LinkedIn Kommentar, https://www.linkedin.com/feed/update/urn:li:activity:7118869083718082560/

[2] World Economic Forum (2023) Global Risks Report 2023, https://www.weforum.org/publications/global-risks-report-2023/,

[3] Schultz S (2023) Der unvermeidliche Weg in eine grüne Zukunft, https://www.spiegel.de/wirtschaft/soziales/bundestagswahl-und-spiral-dynamics-der-unvermeidliche-weg-in-eine-gruene-zukunft-a-0b3fe0ab-a59e-43ae-b868-d61e8c46340d?sara_ref=re-so-app-sh, erschienen am 24.07.2021, zugegriffen am 05.11.2023

[4] Wikipedia (2023a) Spiral Dynamics, https://de.wikipedia.org/wiki/Spiral_Dynamics, zugegriffen am 13.11.2023

[5] Wikipedia (2023b) Spiral Dynamics, https://en.wikipedia.org/wiki/Spiral_Dynamics, zugegriffen am 13.11.2023

[6] Grawe K (2004) Neuropsychotherapie. Hogrefe, Göttingen

[7] Oswald A, Köhler J, Schmitt R (2017) Projektmanagement am Rande des Chaos, 2. Auflage, Springer Vieweg, Heidelberg. This book is avalaible in English: Oswald A, Köhler J, Schmitt R (2018) Project Management at the Edge of Chaos, Springer Verlag, Heidelberg

[8] Beck D E, Cowan C C (2007) Spiral Dynamics: Leadership, Werte und Wandel. J. Kamphausen Verlag & Distribution GmbH, Bielefeld

[9] Center for human emergence, middle east (2023) https://www.humanemergencemiddleeast.org/different-values-different-democracy-alan-tonkin.php, zugegriffen am 13.11.2023

[10] Kriegleder D (2010) Die Integral-Theorie Ken Wilbers und ihre Implikationen für die Politikwissenschaft, Magister Arbeit, Universität Wien

[11] Integrales Forum (2023) https://www.integralesforum.org/, zugegriffen am 13.11.2023

[12] SDi / D·A·CH (Spiral Dynamics integral im Raum Deutschland – Österreich – Schweiz), https://spiraldynamics-integral.de/, zugegriffen am 13.11.2023

[13] Institut für Integrale Studien (2023) https://www.ifis-freiburg.de/, zugegriffen am 13.11.2023

[14] Oswald A (2021) Cultural Entropy: Corona deckt unsere Werte auf!, Blog-Beitrag März 2020, https://agilemanagement40.com/cultural-entropy-corona-deckt-unsere-werte-auf

[15] Oswald A (2021) Projekt-Controlling, alles eine Frage der richtigen Werkzeuge!?, Blog-Beitrag März 2019, https://agilemanagement40.com/projekt-controlling-alles-eine-frage-der-richtigen-werkzeuge

[16] Oswald A (2021) Gesellschaftlicher Wandel – Sein oder Nichtsein? – Das ist hier die Frage!, Blog-Beitrag vom Mai 2020, https://agilemanagement40.com/gesellschaftlicher-wandel-sein-oder-nichtsein-das-ist-hier-die-frage

[17] Oswald A (2018) Governance: Die hohe Kunst der Führung von Gesellschaft, Unternehmen und Projekten, Blog-Beitrag vom September 2018,  https://agilemanagement40.com/governance-die-hohe-kunst-der-fuehrung-von-gesellschaft-unternehmen-und-projekten

[18] Oswald A (2019) Projekte neu gedacht: Entwicklungsstufen, Selbstorganisation und Co-Evolution, Blog-Beitrag vom Februar 2019, https://agilemanagement40.com/projekte-neu-gedacht-entwicklungsstufen-selbstorganisation-und-co-evolution

[19] Kühl O (2023) Z: Kurze Geschichte Russlands, von seinem Ende her gesehen, Rowohlt Berlin, 1. Kindle Edition

AI & AM 4.0: Agent Based Modeling – Emergenz – Wunder geschehen!

Kürzlich erschien ein offener Brief zum Thema ‚Pausieren von gigantischen AI-Experimenten‘ à la GPT-3 oder GPT-4 [1].

Der Brief wurde inzwischen von mehr als 30.000 Personen unterschrieben. Er begründet sein Anliegen eines halbjährigen Aussetzens von AI-Groß-Entwicklungstätigkeiten mit folgendem Satz:

“This does not mean a pause on AI development in general, merely a stepping back from the dangerous race to ever-larger unpredictable black-box models with emergent capabilities.”

Es geht die Angst vor ‚emergenten Fähigkeiten‘ um. – An anderer Stelle wird von einer ‚Gottgleichen‘ KI gewarnt, die die Menschheit zerstören könnte [2].

Diese Sorgen mögen berechtigt sein, umso mehr, als man beobachten kann, wie lange sich die EU schon bemüht, den längst fälligen EU AI ACT als EU-Gesetz zu verabschieden [3].

In diesem Blog geht es jedoch nicht um diese Sorge oder Angst, sondern um das Thema Emergenz, das offensichtlich solche ‚Wunder‘ wie das der „Sparks of Artificial General Intelligence: Early experiments with GPT-4” [4] möglich macht. Die Intelligenz-Fähigkeiten von GPT-4, auch im Vergleich zu chatGPT/GPT-3.x, sind sensationell, gleichgültig, ob es um Mathematik, Musik, Bilderzeugung, Sprache und Logik und vielem mehr geht. – In nicht wenigen Fällen zeigt GPT-4 Intelligenz-Fähigkeiten, die überhaupt nicht trainiert worden sind. – Also klare Zeichen von emergenten Eigenschaften.

In Wikipedia wird Emergenz wie folgt definiert: „Emergenz (lateinisch emergere „Auftauchen“, „Herauskommen“, „Emporsteigen“) bezeichnet die Möglichkeit der Herausbildung von neuen Eigenschaften (Systemeigenschaften) oder Strukturen eines Systems infolge des Zusammenspiels seiner Elemente.“ [5]. Emergenz ist auch direkt mit dem Begriff der Selbstorganisation verbunden. Selbstorganisierte Systeme zeigen Emergenz bzw. emergente Eigenschaften. Auf der Basis dieser Definition wimmelt es in der Natur und damit in der Mathematik, den Naturwissenschaften/ Psychologie und den Sozialwissenschaften nur so von emergenten Eigenschaften, Strukturen oder Systemen.

In [6] wird auch deshalb zwischen schwacher und starker Emergenz unterschieden. Starke Emergenz liegt im Falle des Lebens vor, das aus Atomen oder Molekülen emergiert. – Oder, im Falle unseres Bewusstseins, das aus der materiellen Struktur unseres Gehirns emergiert. Die meisten anderen überraschenden Eigenschaften von Viel-Agenten Systemen wie zum Beispiel die Supraleitung, die Farbe von Gold, der Collective Mind eines Teams oder die Kultur einer Organisation werden eher der schwachen als der starken Emergenz zugeordnet. Ich halte die Unterscheidung für wenig sinnvoll.- Entscheidend für die Emergenz ist vielmehr, dass das durch die Wechselwirkung von Agenten entstehende Systeme Eigenschaften zeigt, die sich nicht aus den Eigenschaften der Agenten ableiten lassen.  In [7] wird deshalb für die Beschreibung von Large Language Model’s bezüglich Emergenz eine Definition verwendet, die die obige Definition aus [5] weiterführt:

„Emergence is when quantitative changes in a system result in qualitative changes in behavior.”

Abbildung 1: Bilder erzeugt durch die KI DALL-E [8] mit den Prompts: Create a painting in the style of Matisse: (Create a painting in the style of Gauguin:) Collective Mind as an example of social emergence which demonstrates synergies in a team

Im Falle von Large Language Models (LLM) gibt es mehrere quantitative Änderungen, die qualitative Veränderung hervorrufen: u.a. Anzahl der Parameter (Neuronen), Menge der Daten und die Trainingszeit. Aber auch die Architektur der LLM’s spielt eine entscheidende Rolle: u.a. das Transformer/Decoder Design, der Attention Mechanismus, usw.. So zeigt GPT-3 bei etwa 10 hoch 22 (10 Trilliarden) Floating Point Operations (FLOPs) als Maß für die Trainingszeit und 13 Milliarden Parametern einen sprunghaften Anstieg der sogenannten few-shoot prompting Genauigkeit.- Also nach einigen wenigen Lerndaten meistert das AI-System ähnliche Aufgabenstellungen. – Dieser Übergang entspricht einem Phasenübergang. – Ganz ähnlich zu der gesellschaftliche Resonanz für AI-System, die mit dem Erscheinen des einfach zu bedienenden chatGPT sprunghaft emergierte. 

Für die Beschreibung emergenten Systemverhaltens wurde in der Wissenschaftsgeschichte sehr oft der Nobelpreis vergeben: Es geht darum, diejenigen quantitativen Parameter ausfindig zu machen, die einen qualitativen Unterschied machen. Und dies ist meistens sehr schwierig, da man den Parametern nicht ansieht, ob sie in ihrer Zusammenstellung einen Unterschied machen. – Der qualitative Unterschied lässt sich also nicht auf die quantitativen Unterschiede in den Parametern reduzieren.

Jedoch wurde auch in der Geschichte der Wissenschaft aus dem Unverständnis der Emergenz eine unsinnige Spaltung in reduktionistische Wissenschaften und nicht-reduktionistische (holistische) Wissenschaften [9] vorgenommen. Hiernach wurde zum Beispiel die Physik als reduktionistische Wissenschaft angesehen, da angeblich alle System-Eigenschaften in der Physik auf die Eigenschaften der Agenten (z.B. Elementarteilchen, Atome) zurückgeführt werden, also reduziert werden.  Die Sozialwissenschaft mit der Soziologie à la Luhmann wurde zum Beispiel als holistische Wissenschaft wahrgenommen, da Luhmann, die Eigenschaften des sozialen Systems nicht auf die Menschen zurückführte, sondern dem System eine Eigenständigkeit zuerkannte.

Diese teilweise immer noch vorhandene naive Sicht des Gegensatzpaares Reduktionismus-Holismus wird durch das Auftauchen von GPT-4, aber auch schon durch die Erfahrungen mit chatGPT, kräftigst widerlegt: Die technischen Systeme chatGPT/GPT-3.x und chatGPTplus/GPT-4 zeigen mit ihrer Intelligenz eine für alle erfahrbare Emergenz. Diese AI-Systeme wurden auf der Basis bestimmter Daten-Parameter (u.a. Anzahl der Neuronen, Zeit des Trainings, Menge der Trainingsdaten) sowie bestimmten Architektur-Parameter (u.a. Transformer/Decoder und Attention-Mechanismus) mehr oder weniger gezielt kombiniert und es entstanden bei einer bestimmten Kombination dieser Parameter „wie durch ein Wunder“ emergente Intelligenz-Eigenschaften. – Es ist zu vermuten, dass bei Wegnahme z.B. der Attention-Eigenschaft, die emergente Eigenschaft der Intelligenz verschwindet, auch wenn die gigantische Skalierung bleibt.

Deswegen sind die emergenten AI-Eigenschaft jedoch nicht weniger wunderbar.

Dieses Beispiel belegt äußerst eindrucksvoll, dass die Natur, auch wenn sie in Form einer Technologie daherkommt, alle Ingredienzien für starke Emergenz enthält. – Wir ‚finden‘ diese Ingredienzien ‚lediglich‘.

Agent Based Modeling (ABM) spielt beim Auffinden dieser Eigenschaften eine prominente Rolle, auch wenn diese Rolle selbst in der Wissenschaft im Verhältnis zur Bedeutung nur wenigen bekannt sein dürfte. Unlängst hat das Santa Fe Institute neben Netlogo das ABM-Python-Framework MESA als Lecture aufgenommen [10]. Diese Lecture bildet mit moderner Technik das ABM des 25 Jahre alten Buches über ‚Growing Artificial Societies‘ von Epstein und Axtell nach [11]. Epstein und Axtell zeigen, wie man mit einfachen lokalen Agenten-Parametern die emergenten System-Eigenschaften von Gesellschaften erzeugen kann. – Der Überraschungseffekt ist nicht selten groß: So beeinflusst zum Beispiel die Fähigkeit des Sterbens oder der Reproduktion von Agenten ganz erheblich die emergenten Eigenschaften der ABM Ökonomie: Diese Modell-Eigenschaften sind nämlich notwendig, damit sich überhaupt sogenannte Nicht-Gleichgewichts-Handelsmärkte ausbilden können, die mit realen Märkten sehr gut übereinstimmen. – Das immer noch in der Gesellschaft vorherrschende neoklassische Verständnis der Gleichgewichts-Ökonomie kennt solche Zusammenhänge nicht.

In den folgenden Blogbeiträgen beschäftige ich mich mit der Suche nach den Parametern, die das emergente Teamverhalten Collective Mind hervorrufen. Im Management 4.0 gehen wir davon aus, dass die Parameter der Theorie der Selbstorganisation (Rahmen-Parameter, Kontroll-Parameter und Ordnungs-Parameter) die entscheidenden Parameter sind, die emergentes Teamverhalten hervorbringen. Wir kennen diese Parameter (vermutlich) auch schon, jedoch nicht in hinreichend formalisierter ABM Sprache. Die in vorhergehenden Blog-Beiträgen unter Verwendung von Natural Language Processing abgeleitete Similarity-Matrix des Collective Mind (Collective Mind Operator) ist lediglich ein phänomenologisches Modell (siehe Blog-Beitrag vom April und Juni 2022). – Der Collective Mind Operator kann in der Teampraxis sehr gut den Collective Mind messen, er sagt jedoch leider nichts darüber aus, wie der Collective Mind emergiert. Hierzu benötigen wir die formalisierten ABM-Parameter, die die Collective Mind Emergenz hervorbringen. – Die Suche nach diesen formalisierten Parametern ist kein Selbstzweck, denn die Wissenschaftsgeschichte hat gezeigt, dass die Kenntnis der formalisierten Parameter recht oft mit großen Erkenntnisgewinnen verbunden ist. – Die GPT-Geschichte ist der sichtbarste Beweis hierfür.

Der Übergang zur Python-Technologie mit MESA-Python eröffnet auch recht einfach die Möglichkeit intelligente Agenten auf der Basis von chatGPT anzubinden. Das werde ich nicht tun, jedoch hat die Entwicklung hierzu, wie in einem meiner letzten Blogs prognostiziert, schon begonnen. Die Stanford University hat zusammen mit Google eine auf dem Computerspiel ‚The Sims‘ basierendes ABM erstellt, in dem 25 Agenten ihre Intelligenz von chatGPT erhalten [12]. Die Agenten haben eine ‚Gehirn-Architektur‘ aus Langzeit- und Kurz-Zeitgedächnis, dessen kognitive Intelligenz von chatGPT kommt. Die Agenten verfügen zusätzlich über einen sogenannten ‚reflection tree‘, der der Ziel-Hierarchie bzw. der Dilts Pyramide von Management 4.0 sehr nahe kommt [13].- Die Ebenen Identität, Fähigkeiten und Verhalten sowie Kontext (Beobachtung) sind schon vorhanden. – Diese und weitere Ebenen können sicherlich noch ausgebaut werden.

Damit sind die Agenten in der Lage einen individuellen kognitiven PDCA-Zyklus durchzuführen, der ‚reflektiertes‘ Handeln erlaubt.

Es besteht auch die Möglichkeit, dass sich Menschen aktiv in dieses Handeln künstlicher Agenten einbringen können. Damit ist es zum Beispiel möglich hybride Universen aus AI und Menschen zu bilden.

Man stelle sich ein Anwendungsbeispiel von vielen vor: Ein Projektleiter soll ein Projekt durchführen. Er lässt das Projekt zum Test vorab in der künstlichen Welt durchführen und erhält so Hinweise auf seine Durchführbarkeit. –  Oder er lässt parallel zur realen Welt eine künstliche Welt mitlaufen, in die die Daten der realen Welt synchron eingespeist werden, um Forecasting zu betreiben.

In [12] wird berichtet, dass das Handeln der künstlichen Agenten von Menschen auf ‚Menschen-Ähnlichkeit‘ überprüft wurde. Das emergierende ‚believable behavior‘ der Agenten und des emergierenden sozialen Systems wird von den Evaluationspersonen, trotz einiger Fehler, als sehr hoch eingestuft.   

Das nächste Wunder geschieht schon!

    

[1] Future of Life Institute (2023) Pause giant AI Experiments, https://futureoflife.org/open-letter/pause-giant-ai-experiments/, zugegriffen am 22.04.2023

[2] Barkey S (2023) Kurz vor dem Durchbruch: „Gottgleiche“ KI könnte laut Experte Menschheit zerstörenhttps://www.berliner-zeitung.de/news/agi-kurz-vor-durchbruch-gottgleiche-ki-koennte-laut-experte-ian-hogarth-menschheit-zerstoeren-kuenstliche-allgemeine-intelligenz-li.339062, zugegriffen am 22.04.2023

[3] EU (2023) EU AI Act, https://artificialintelligenceact.eu/, zugegriffen am 22.04.2023

[4] Bubeck S et al. (2023) Sparks of Articial General Intelligence: Early experiments with GPT-4, arXiv:2303.12712v3 [cs.CL] 27 Mar 2023, zugegriffen am 22.04.2023

[5] Wikipedia (2023) Emergenz, https://de.wikipedia.org/wiki/Emergenz, zugegriffen am 25.04.2023

[6] Greve J, Schnabel A (Herausgeber) (2011) Emergenz: Zur Analyse und Erklärung komplexer Strukturen, suhrkamp taschenbuch wissenschaft

[7] Wi J et al. (2022) Emergent Abilities of Large Language Models, in Transactions on Machine Learning Research 08/2022, arXiv:2206.07682v2 [cs.CL] 26 Oct 2022

[8] DALL-E (2023) https://openai.com/product/dall-e-2, zugegriffen am 03.05.2023

[9] Wikipedia (2023) Reduktionismus, https://de.wikipedia.org/wiki/Reduktionismus, zugegriffen am 25.04.2023

[10] Complexity Explorer (2023) MESA-Python Lecture, https://www.complexityexplorer.org/courses/172-agent-based-models-with-python-an-introduction-to-mesa/segments/17326, Santa Fe Institute, zugegriffen am 30.04.2023

[11] Epstein J M, Axtell R (1996) Growing Artificial Societies – Social Science from the Bottom Up, The Brookings Institution, Washington D.C.

[12] Park J S et. al. (2023) Generative Agents: Interactive Simulacra of Human Behavior, arXiv:2304.03442v1 [cs.HC] 7 Apr 2023

[13] Oswald A, Müller W (2019) Management 4.0 – Handbook for Agile Practices, Release 3.0, Verlag BoD, kindle edition

AI & AM 4.0: Agent Based Modeling – Von Agenten Intelligenz und Kollektiver Intelligenz oder von ‚Intelligenz ist immer kollektiv‘?!

Das Thema Kollektive Intelligenz hat gerade Hochkonjunktur. Sei es in Form der mehrteiligen ZDF-Fernsehserie der Schwarm [1] und der damit verbundenen zweiteiligen Terra X Dokumentationen zur Intelligenz von Schwärmen [2], [3]. – Oder, auch in Form der AI Systeme chatGPT und des gerade veröffentlichten GPT-4 [4]. – Diese Systeme sind in zweierlei Hinsicht Systeme kollektiver Intelligenz: Die GPT-X Systeme und andere vergleichbare Systeme verwenden als Daten die Ergebnisse unserer aller Intelligenz und die Systeme selbst sind über die Neuronalen Netzwerke, auf denen sie beruhen, kollektive Systeme, die Intelligenz hervorbringen können, wenn sie mit unserer Intelligenz in Form von Daten gefüttert werden. – Dies ist gar nicht so unähnlich unserer kulturellen Entwicklung, die Produkte menschlicher Intelligenz hervorgebracht hat – nur eben viel, viel schneller!

Es ist absehbar, dass sich in Zukunft aus der Intelligenz von GPT-X eine Künstliche Allgemeine Intelligenz (Artificial General Intelligence, kurz AGI) entwickeln wird. Der CEO von openai betont in einem Blogbeitrag erst kürzlich hierzu die gesellschaftliche Verantwortung von openai [5] und im EU AI Act Newsletter wird, meines Erachtens zum ersten Mal, von der nahen Bedeutung von AGI im Kontext von GPT-X  Systemen gesprochen [6].   

In [2] und [3] wird eindrucksvoll geschildert, wie natürliche kollektive mobile Systeme, die aus ‚dummen‘ Agenten (u.a. Ameisen, Bienen, Fischen) bestehen, im Schwarm intelligentes Verhalten zeigen. Die vermeintlich ‚dummen‘ Agenten haben ihrerseits ein wenig Intelligenz auf der Basis von kleinen natürlichen neuronalen Netzwerken. – Die Natur ist also offensichtlich in der Lage mittels kollektiver Systeme (z.B. Ameisen Kollektiv) und von Subsystemen (z.B. Ameise als Agent) Intelligenz-Hierarchien aufzubauen.

Dies relativiert auch unseren Anspruch an intelligenter Einzigartigkeit: Kollektive Systeme, gleichgültig ob natürlich oder künstlich, haben das Potential, über eine geeignete Vernetzung, Intelligenz auszubilden.

Hieraus leite ich die These ab, dass Intelligenz immer kollektiv ist. Dies wird auch durch Ashby’s Law [7] gestützt, wonach ein komplexes System nur durch ein anderes komplexes System mit hinreichender Komplexität reguliert werden kann. Komplexität ist also eine Vorbedingung für Intelligenz. Deshalb sagen wir auch im Management 4.0, dass Komplexität ein Geschenk ist, das nicht reduziert werden sollte, sondern nur reguliert werden darf: Die Komplexität unseres Gehirns (und unseres gesamten Körpers) mit ca. 86 Milliarden vernetzter Neuronen ermöglicht es, dass wir uns adaptiv auf unsere Umgebung einstellen und diese ggf. regulieren. – Ich nehme an, dass niemand seiner Intelligenz, also seiner neuronalen Komplexität, beraubt werden möchte, indem diese reduziert wird.

In Konsequenz heißt dies auch, dass gut geführte soziale Organisationen, u.a. Teams, mit einer wertschaffenden Komplexität, kollektive Intelligenz zeigen, die über die Intelligenz der einzelnen Teammitglieder hinausgeht. Die einzige ! Aufgabe von Führung ist es, zu ermöglichen, dass sich diese kollektive Intelligenz ausbildet.    

Es ist vielleicht auch nicht abwegig, anzunehmen, dass Intelligenz eine Vorbedingung für Bewusstsein ist. – Und, dass Bewusstsein sich aus intelligenten kollektiven Systemen emergent entwickelt. Die Integrated Information Theory zum Bewusstsein zeigt erste Überlegungen in diese Richtung [8].

Im letzten Blog-Beitrag habe ich den Video-Vortrag des DeepMind Mitarbeiters Thore Graepel zum Thema ‚Multi-Agent Learning in Artificial Intelligence‘ erwähnt [9]. Thore Graepel referenziert dort am Anfang auf den Artikel von Legg und Hutter zum Thema ‚Universal Intelligence‘ [10]. Legg und Hutter geben einen Literatur-Überblick zum Verständnis von Intelligenz und definieren ihr Verständnis von Agent Intelligence:

Abbildung 1: Definition Universelle Intelligenz nach [10]

In [10] wird angenommen, dass die Wahrscheinlichkeit für Kontexte exponentiell (zur Basis 2) mit der Komplexität abnimmt. – Hier folgen Legg und Hutter auch dem Prinzip des Occam’schen Rasiermessers [11]: Die Natur bevorzugt Einfachheit und unsere Modelle zu Ihrer Beschreibung sollten dementsprechend auch einfach sein. – Einfache Kontexte werden also bei der Intelligenzberechnung höher gewichtet. Man kann auch jetzt verstehen, warum die melting pot Initiative von DeepMind von Bedeutung ist: Es werden möglichst viele Kontexte erstellt, um die allgemeine Intelligenz von Agenten über die obige Formel zu ermitteln.  

Legg und Hutter haben gezeigt, dass die obige Formel für Intelligenz alle bekannten Definitionen von Intelligenz subsummiert und auch auf den Intelligenzbegriff bei Menschen angewendet werden kann.- Auch wenn die konkrete Ausgestaltung von V und P in der obigen Formel für nachvollziehbare Kritik sorgt [12] und sich noch ändern dürfte. – Abbildung 2 visualisiert die Formel, in dem ich für das Mindset eines Agenten die Dilts Pyramide angenommen habe: Der Agent passt sich über die Zeit in einem PDCA-Zyklus mittels seiner Fähigkeiten und seines Verhaltens (auch policy genannt) an seine Umgebung an. Über die Funktion V wird die Performance des Agenten im Hinblick auf ein Ziel gemessen.- Der Agent erhält eine Belohnung. Die Performance des Agenten kann in zweierlei Hinsicht gemessen werden: Intern und extern. Das interne Performancemaß wird utility U genannt [13]. Agenten werden  rational genannt, wenn sie anstreben das interne Performancemaß mit dem externen in Einklang zu bringen. Einer der Kritikpunkte an [10] ist, dass (lediglich) das externe Performancemaß zur Intelligenzmessung herangezogen wird. 

    

Abbildung 2: Visualisierung der Formel zur Universellen Intelligenz nach [10]

Die Definition der Universellen Intelligenz ist sicherlich als Referenz für die Vermessung von Agenten Intelligenz sehr hilfreich. Ihre operative Ausgestaltung hat aber erst begonnen. – Und, sie ist rein phänomenlogisch, sie sagt also nichts über die Ingredienzien von Intelligenz aus, also welche Elemente wie zusammengebracht werden müssen, um intelligente Agenten bzw. Systeme zu bauen. Aus diesem Grunde versuche ich im Folgenden, einige mir wichtig erscheinende Elemente, in Form von Prinzipien, zu nennen. Ich lasse mich hierbei von der Transformer Technologie leiten, auf der die GPT-X Technologie beruht. Die aus meiner Sicht mit Abstand beste Darstellung zur Transformer-Technologie hat Ralph Krüger geschrieben – er macht keine verständnislosen Vereinfachungen, sondern beschreibt die Technologie didaktisch brillant [14]. Nicht desto weniger kann es manchmal beim Lesen helfen, die in Bing eingebundene chatGPT Bot Version als Assistenz zu benutzen ;-).

Neben [14] empfehle ich [15], eine dreiteilige sehr gute visuelle Aufbereitung des Matrizen-Flows (Tensorflows) in Transformern und für einen tieferen Blick in die Programmierung den Dreiteiler [16] sowie [17]. Als Einstieg kann der Spektrum der Wissenschaft Artikel von Manon Bischoff dienen [18]. Dieser Artikel enthält eine ganze Reihe interessanter Hinweise, u.a. auch die von mir im letzten Blog-Beitrag geäußerte Vermutung, dass chatGPT lediglich 1,5 Milliarden Parameter enthält, also mehr als 100 mal weniger als GPT-3. Manon spricht sogar von nur 1,3 Milliarden Parametern. Als Einstieg empfehle ich zusätzlich den Artikel über chatGPT [19].

Auf der Basis dieser Literatur liste ich im Folgenden die Prinzipien, die meines Erachtens das Was und das Wie der Intelligenz ausmachen:

Intelligenz ist immer kollektiv: Als Kollektiv bezeichne ich ein System von vernetzten Elementen (künstliche oder natürliche Neuronen, Ameisen, Menschen, usw.), das die Außenwelt per Transformation in eine Innenwelt abbildet. Die Transformation erfolgt im Falle der AI durch künstliche neuronale Netzwerken, die Tensor Operationen durchführen (bzw. Matrizenoperatione durchführen: Die Matrizenelemente sind die Gewichte zwischen den Neuronen). – Die Tensor Operationen sorgen also für die Abbildung. Damit diese Abbildung hinreichend viele Informationen der Außenwelt abbilden kann, benötigt sie viele Zustände, also viele Parameter, im Falle von GPT-3 175 Milliarden. Die Abbildung der Außenwelt über eine Parametrisierung in der Innenwelt, erfolgt über Selbstorganisations-Mechanismen, in denen eine Zielfunktion im AI-Training dafür sorgt, dass die niedrigsten energetischen Zustände in dem hochdimensionalen Parameterraum gefunden werden. – Diese repräsentieren nach dem Training die Daten der Außenwelt.

Ich habe die Bing AI gefragt, ‚Gibt es eine Zielfunktion für das Lernen im Gehirn‘. Bing AI wandelt dies in eine Frage nach ‚Zielfunktion Lernen Gehirn‘ um und generiert folgende Antwort:

Ja, das Gehirn hat eine Zielfunktion für das Lernen. Das Lernen ist im Grunde genommen eine Reaktion unseres Gehirns auf neue Erfahrungen. Wenn eine solche Erfahrung eine nachhaltige Änderung im Gehirn hervorruft, dann kann man von Lernen sprechen. Das Gehirn bereitet sich dadurch auf die Zukunft vor. Natürlich kann man sein Gehirn anregen und unterstützen, neue Dinge schneller zu lernen oder die synaptischen Verbindung zu bilden, die man möchte. Dazu brauchen wir nur unsere Aufmerksamkeit genau auf die zu lernenden Themen zu richten und sie entsprechend oft wiederholen.

Diese Definition der Zielfunktion entspricht nicht ganz meinem obigen Verständnis einer Zielfunktion: Außer, man versteht die neuronalen Mechanismen, die sich hinter der Aufmerksamkeit verbergen, als solche.

Die Außenwelt wird über Aufmerksamkeit kontextualisiert: Im Falle der Transformer-Technologie ist der Aufmerksamkeits-Mechanismus (Attention-Mechanismus) der Mechanismus, der die Leistungssteigerung gegenüber vorherigen AI Systemen wesentlich ausmacht. Hierzu werden die sprachlichen Inhalte der Außenwelt auf ihre semantischen Zusammenhänge hin analysiert: Alle Worte eines Satzes (eines Textes) werden herausgegriffen, also mit Aufmerksamkeit belegt, und es wird die Korrelation dieses herausgegriffenen Wortes zu allen anderen Worten in diesem Satz  (diesem Text) ermittelt. – Die Korrelationswahrscheinlichkeiten werden in speziellen neuronalen Netzwerken (Tensoren) trainiert. Für die Generierung von neuen Texten wird auf diese trainierten Korrelationswahrscheinlichkeiten zurückgegriffen.

Wahrscheinlichkeiten werden durch zusätzliche kollektive Maßnahmen auf verschiedenen Ebenen ausbalanciert: Die Ergebnisse, die ein Transformer nach außen liefert, sind die Ergebnisse mit der höchsten Wahrscheinlichkeit. Um die Verlässlichkeit der Wahrscheinlichkeiten zu erhöhen, werden die Wahrscheinlichkeiten pro Transformer Modul nicht nur einmal berechnet, sondern mehrmals parallel d.h. zum Beispiel mit 8 attention Mechanismen, dem sogenannten multi-head-attention. Zusätzlich werden im Falle von GPT-3 96 Transformer Module (Decoder) hintereinander geschaltet, um die Ergebnisse zu verfeinern und zu stabilisieren [18]. Der multi-head-attention Mechanismus zeigt damit die Wirkung eines Teams mit acht Teammitgliedern, in dem die potentiellen mentalen Verzerrungen der Teammitglieder ausbalanciert werden. Und, das Hintereinanderschalten der Transformer-Module lässt sich gut mit der iterativen Wirkung von 96-PDCA-Zyklen vergleichen.

… ggf. weitere Prinzipien

Ich glaube, dass Intelligenz nicht auf natürliche Systeme beschränkt ist, ja dass diese Einteilung in natürliche und künstliche Systeme künstlich ist: Intelligenz ist ein universelles Phänomen, das sich potentiell in allen Systemen ausdrücken kann, sobald hierfür die Voraussetzungen vorliegen…. Vielleicht sind die oben genannten Prinzipien tatsächlich (einige) der Voraussetzungen …Vielleicht wird die Filmreihe ‚Autobots – The Transformers‘ sogar einmal als (diesbezüglich) hellsehend bezeichnet werden [20]. 

 

[1] ZDF (2023a) Der Schwarm, https://www.zdf.de/serien/der-schwarm

[2] ZDF (2023b) Terra X – Schlaue Schwärme, Geheimnisvolle Sprachen, https://www.zdf.de/dokumentation/terra-x/schlaue-schwaerme-geheimnisvolle-sprachen-doku-102.html

[3] ZDF (2023c) Terra X – Schlaue Schwärme, Rätselhafte Kräfte, https://www.zdf.de/dokumentation/terra-x/schlaue-schwaerme-raetselhafte-kraefte-doku-100.html

[4] openai (2022) GPT-4, https://openai.com/product/gpt-4, zugegriffen am 20.03.2023

[5] Altman S (2023) Planning for AGI and beyond, https://openai.com/blog/planning-for-agi-and-beyond, zugegriffen am 15.03.2023

[6] The future of Life Institute (2023) The EU AI Act Newslettr #25 vom 01/03/23-14/03/23

[7] Wikipedia (2023) Ashby’s Law, https://de.wikipedia.org/wiki/Ashbysches_Gesetz, zugegriffen am 15.03.2023

[8] Wikipedia (2023a) IIT- Integrated Information Theory, https://en.wikipedia.org/wiki/Integrated_information_theory, zugegriffen am 15.03.2023

[9] Graepel T (2023) The role of Multi-Agent Learning in Artificial Intelligence Research at DeepMind, https://www.youtube.com/watch?v=CvL-KV3IBcM&t=619s, zugegriffen am 06.02.2023

[10] Legg S und Hutter M (2007) Universal Intelligence: A Definition of Machine Intelligence, arXiv:0712.3329v1

[11] Wikipedia (2023b) Occam’s razor, https://en.wikipedia.org/wiki/Occam%27s_razor, zugegriffen am 21.03.2023

[12] Park D (2023) Paper Summary: Universal Intelligence: A Definition of Machine Intelligence, https://crystal.uta.edu/~park/post/universal-intelligence/, zugegriffen am 06.03.2023

[13] Russel S und Norvig P (2016) Artificial Intelligence – A modern approach, Third Edition, Prentice Hall Series in Artificial Intelligence Series, Pearson Education Limited

[14] Krüger R (2021) Die Transformer-Architektur für Systeme zur neuronalen maschinellen Übersetzung – eine popularisierende Darstellung, in trans-kom 14 [2], Seite 278-324

[15] Doshi K (2022) Transformers Explained Visually: How it works, step-by-step published January 2, 2021, towardsdatascience.com, zugegriffen am 10.05.2022,  (Part 1, 2, 3, 4), https://towardsdatascience.com/transformers-explained-visually-part-1-overview-of-functionality-95a6dd460452, https://towardsdatascience.com/transformers-explained-visually-part-2-how-it-works-step-by-step-b49fa4a64f34, https://towardsdatascience.com/transformers-explained-visually-part-3-multi-head-attention-deep-dive-1c1ff1024853, https://towardsdatascience.com/transformers-explained-visually-not-just-how-but-why-they-work-so-well-d840bd61a9d3

[16] Gosthipaty A R und Raha R (2022) A Deep Dive into Transformers with Tensorflow and Keras, Part 1-3, PyImagesearch.com, published November 2022, zugegriffen am 06.12.2022, https://pyimagesearch.com/2022/09/05/a-deep-dive-into-transformers-with-tensorflow-and-keras-part-1/, https://pyimagesearch.com/2022/09/26/a-deep-dive-into-transformers-with-tensorflow-and-keras-part-2/, https://pyimagesearch.com/2022/11/07/a-deep-dive-into-transformers-with-tensorflow-and-keras-part-3/

[17] Cristina S (2023) Training the Transformer Model, https://machinelearningmastery.com/training-the-transformer-model/, updated am 06.01.2023, zugegriffen am 20.03.2023

[18] Bischoff M (2023) Wie man einem Computer das Sprechen beibringt, https://www.spektrum.de/news/wie-funktionieren-sprachmodelle-wie-chatgpt/2115924, veröffentlicht am 09.03.2023, zugegriffen am 20.03.2023

[19] Ruby M (2023) How ChatGPT Works: The Model Behind the Bot, https://towardsdatascience.com/how-chatgpt-works-the-models-behind-the-bot-1ce5fca96286, veröffentlicht am 30.01.2023, zugegriffen am 20.03.2023

[20] Wikipedia(2023) Autobot, https://en.wikipedia.org/wiki/Autobot, zugegriffen am 20.03.2023

Transformatives Bogenschießen: Von ‚agilen‘ Überzeugungen oder „von den Türen, die wir heute aufmachen, durch die wir morgen gehen [1]“

Im letzten Blogbeitrag habe ich mein neues Seminar Transformatives Bogenschießen erstmalig vorgestellt.

In diesem Blog-Beitrag skizziere ich die Wirkweise von Transformativem Bogenschießen.

Transformatives Bogenschießen (TB) kann eine Ressource sein oder als Katalysator für die individuelle Veränderungsarbeit, d.h. für die mentale Problembehandlung, eingesetzt werden.

TB als Ressource bedeutet, dass dem Menschen wichtige Aspekte, wie die Gesundheit, die Kraft, die Ruhe oder die Intuition, gestärkt werden. Ich skizziere hierzu zwei Beispielen aus meiner TB-Selbsterfahrung – Gesundheit sowie Ruhe und Intuition:

Gesundheit: Nach ca. zwei Stunden Bildschirmarbeit, habe ich Probleme, meine Augen auf den Bildschirm zu fokussieren. Dies wird zunehmend von einem Gefühl von Unwohlsein und Stress begleitet. – Wahrscheinlich wurde dies durch die Bildschirmarbeit, während der langen virtuellen Meetings in der Coronazeit ausgelöst oder beschleunigt. Ich nutze Bogenschießen für meine Gesundheit, indem ich in meinem Garten schieße: Beim Fokussieren auf größere Distanzen werden meine Augen entlastet und dies beseitigt schon nach kurzer Zeit das Unwohlsein.

Ruhe und Intuition: Beim intuitiven Bogenschießen wird nicht explizit gezielt, sondern man vertraut sich und den Schuss dem Körpergefühl an. Gehen dem Bogenschießen keine stressigen Stunden voraus, bin ich mit meinem Trefferbereich zufrieden. – Körpergefühl und mentale Ausrichtung sind im Einklang. Im Falle von vorausgehenden stressigen Stunden, u.a. durch zu viel Bildschirmarbeit, ist der Trefferbereich wesentlich schlechter. Die erforderliche Ruhe und die Intuition bilden sich jedoch durch TB nach einer gewissen Zeit wieder erfolgreich aus. Der Trefferbereich wird deutlich besser: Körper und Geist entspannen sich und geraten wieder in Einklang. – Sehr wesentlich ist, dass sich im Bogenschießen das Gefühl für Zeit ändert. Die Intuition verbindet in dem Zeitraum des Loslassens der Sehne die Fäden der Vergangenheit und Gegenwart zu einem Faden der Zukunft. – Insbesondere für Menschen, die unter Zeit die Uhrzeit verstehen, ist dies eine besondere Erfahrung von Zeit [1].
TB ist kein körperliches Auspowern wie bei vielen anderen Sportarten, sondern sorgt, wie in diesem Beispiel, für eine ruhige Pflege der Intuition. Transformatives Bogenschießen als Ressource für Ruhe und Intuition entspricht im Wesentlichen dem Meditativen Bogenschießen [2].

Bogenschießen als Ressource entwickelt sich nur, wenn man bereit ist, das im Seminar Gelernte regelmäßig anzuwenden. – Denn die Ressource wird sich erst nach einigen Wochen des Übens entfalten.

Nach dem Erlernen der Techniken des Bogenschießens und dem Erfahren des Bogenschießens als Ressource, ist die individuelle Veränderungsarbeit der dritte Teil des Seminars. Hierbei ist zu beachten, dass der Durchgang durch das sogenannte ‚Transformative Tor‘ in die Veränderungsarbeit nur sinnvoll ist, wenn die Teilnehmer die Technik des Bogenschießens gut (genug) beherrschen. Falls die Teilnehmer die Technik des Bogenschießens kennen, aber wiederholt nicht umsetzen können, ist dies ein starkes Indiz für ein mentales Problem, gemäß der Erfahrung „Bogenschießen wirkt wie ein Spiegel der Seele“. Die mentale Ausrichtung, erworben in der Vergangenheit, „verzerrt“ die Schieß- und Ziel-Technik. Die Teilnehmer nehmen diese „Verzerrung“ meistens selbst wahr und ziehen auch sehr oft eine Verbindung zu ihrem Alltag. Lediglich in einigen Fällen ist es angebracht, dass der Trainer „anstupsend“ hilft. Selbstverständlich sind diese Erkenntnisse zuerst einmal nur Hypothesen. Der Trainer unterstützt die Teilnehmer bei der nachfolgenden Analyse und dem Auflösen des Problems sowie dem Transfer in den jeweiligen individuellen Alltag.

In dem Video [2] kann man erkennen, dass die Technik der Teilnehmer nicht gut ausgebildet ist: Entweder wurde vom Trainer nicht auf eine gute Technik geachtet oder das erkennbare, nicht gut Ankern ist ein Indiz für ein mentales Problem. Gutes Ankern bedeutet, dass die Sehne vollständig ausgezogen wird und die Hand mit der ausgezogenen Sehne und dem Pfeil an der Wange angelegt wird, also geankert, wird. Nehmen wir zur Illustration hier an, dass das schlechte Ankern im Video ein Indiz für ein mentales Problem sei. Möglich Probleme könnten zum Beispiel sein: Berührungsangst, zu große Aggressionshemmung oder fehlende Durchsetzungskraft. Die Identifikation des Problems erfolgt im Schießen, indem die Teilnehmer:in die ‚Unsauberkeit‘ in der Technik selbst wahrnimmt und dieser eine Bedeutung zuschreibt. Dies geschieht oft durch Metaphern, z.B. für das obige Beispiel Berührungsangst könnte die Metapher heißen „Ich kann die Kluft nicht überbrücken“. Ist die Metapher da und wurde durch die Teilnehmer:in die Verbindung zum Alltag hergestellt, wird das Problem im Bogenschießen aufgelöst: Es wird zum Beispiel erfolgreich über eine Kluft geschossen. Der abschließende Transfer in den Alltag wird besiegelt. – Die Erfahrung zeigt, dass diese Form der transformativen Veränderungsarbeit sehr erfolgreich ist, d.h. die Veränderung setzt tatsächlich ein.    

Dieser Teil des TB-Seminars ist auf das Seminar beschränkt, da hierfür im Normalfall eine professionelle Begleitung durch einen Trainer oder einen Coach für Transformatives Bogenschießen notwendig ist.

Die oben geschilderten Problembeispiele aber auch die in einer Organisation vorliegenden Widerstände für die erfolgreiche Umsetzung von Transformationen, also grundlegende Veränderungen, beruhen auf Überzeugungen. Im Management 4.0 verwenden wir die Dilts Pyramide [3], um die enorme Bedeutung von Überzeugungen (Glaubenssätzen, Grundannahmen, Prinzipien) für die Veränderung sichtbar zu machen. Die Dilts Pyramide visualisiert, dass Überzeugungen Abstraktionen sind, die aus der Erfahrung in einem jeweiligen Kontext abgeleitet werden. Die individuelle Persönlichkeit stellt eine Disposition für Überzeugungen dar oder anders ausgedrückt, Überzeugungen spiegeln nicht wider, was man weiß, sondern, drücken aus, wer man ist [4].



Abbildung 1: Vier Bilder erzeugt von der Künstlichen Intelligenz DALL-E 2 [5] mit dem Prompt ‚A painting in the style of Chagall: Transformative archery opens doors‘

Kommen wir zu einer Erklärung, warum TB wirkt!

Ich verwende hierzu die Theorie des Predictive Processing wie sie von Philipp Sterzer in [4] skizziert wird. Sterzer ist Psychiater und Neurowissenschaftler. Er zeigt auf der Basis von wissenschaftlichen Fakten, dass die fundamentalen Mechanismen von Überzeugungen für sogenannte ‚normale‘ Überzeugungen, Verschwörungsüberzeugungen, wahnhafte Vorstellungen und schizophrenen Wahn gleich sind.

Nach der Predictive Processing Theorie, also der Theorie der vorhersagenden Verarbeitung, arbeitet unser Gehirn mit einem hypothetischen Modell der Welt. Dieses Modell wird im Idealfall fortwährend an die Weltdaten angepasst, um so neue Vorhersagen zu erzeugen. Überzeugungen sind Teil jenes inneren Modells der Welt, das unser Gehirn für Vorhersagen nutzt.  Überzeugungen sind „Hypothesen über allgemeine und zeitlich stabile Gesetzmäßigkeiten“, die wir in der Welt wahrgenommen haben. Unser Gehirn folgt einem Plan-Do-Check-Act Zyklus: Es werden Hypothesen gebildet, auf der Basis von Hypothesen wird gehandelt, das Handeln wird überprüft und dann ggf. angepasst. Es gibt eine Hierarchie von Vorhersagen, eine Hierarchie vom kognitiven Abstraktem zum sinnlich Konkreten, die es ermöglich Komplexität zu regulieren und Unsicherheit abzubauen. – Ich verweise auch hier auf die Zielhierarchie (vom Big Picture zum Detail) im Management 4.0, die genau diese Funktion hat [6].
Hinzu kommt, dass Vorhersage und Sinnesdaten nach ihrer Präzision, ihrer beigemessenen Wahrscheinlichkeit, gewichtet werden. Nach der Predictive Processing Theorie erzeugen wir Vorhersagen auf der Basis der Differenz von Vorhersage- und Sinnesdaten-Präzision. Die Größere der beiden Präzisionen leitet unsere Vorhersagen und unser Handeln. Der Neuromodulator Dopamin ist von großer Bedeutung für die Balance der beiden Präzisionen. Dopamin wird nicht nur bei Sport und Freude ausgeschüttet, sondern auch bei Stress. Dopamin verändert die Sinnes-Wahrnehmung und übergewichtet die Sinnesdaten-Präzision. Dies kann auch zu Halluzinationen oder Wahnvorstellungen führen: „Die empirischen Befunde …. sprechen für ein (Präzisions-) Ungleichgewicht zwischen Vorhersagen und Sinnesdaten als Grundlage für die Entstehung von Psychosen. Die Folge des Dopaminüberschusses ist somit, dass Sinnesreize, die sonst keine Beachtung fänden, als bedeutsam registriert werden. Man spricht von aberranter Salienz, was so viel heißt wie fehlgeleitete Auffälligkeit.“ Fehlgeleitete Auffälligkeiten erzeugen Angst, und erfordern eine Korrektur des Weltbildes. Und dieses Weltbild muss so konstruiert sein, dass es die fehlgeleitete Auffälligkeit erklärt, also Komplexität reguliert [4].

Das Übergewichten der Vorhersage-Präzision der Überzeugungen kann zur Irrationalität führen, die allerdings adaptiv ist und einen evolutionären Vorteil bringt. Ein Beispiel [4]:

Ein Spaziergänger identifiziert im Dunkeln eine auf dem Boden erkennbare Schlangenform als Schlange. Es gibt keine Evidenz wonach dies tatsächlich eine Schlange ist, jedoch sind die Kosten dieser Erkenntnis eventuell geringer als der Biss einer Schlange, wenn sich die Schlangenform dann wirklich leider als Schlange herausstellen sollte. – Auch wenn sich bei vorsichtigem Annähern herausstellen sollte, dass es nur ein Ast in Schlangenform ist. In diesem Sinn können irrationale Überzeugungen adaptiv sein und stellen evolutionär einen Vorteil dar.

In diesem Beispiel ist die sogenannte Sinnesdaten-Präzision gering. Der Vergleich von Vorhersage-Präzision und Sinnesdaten-Präzision fällt zu Gunsten der Vorhersage-Präzision aus: Die Überzeugung erhält Vorrang. Das Gehirn ist also genau genommen eine „Präzisionsgewichtungsmaschine“ [4].

Im ‚Idealfall‘ sollten Vorhersage-Präzision und Sinnesdaten-Präzision nahe beieinander liegen. – In diesem Fall stellt sich Agilität ein, deshalb habe ich auch im Titel des Blogs von ‚agilen‘ Überzeugungen gesprochen. Problematisch wird es, wenn eine der Präzisionen dominiert. Würde im unserem Beispiel der Schlangenform, die Vorhersage-Präzision stark dominieren, wird im schlimmsten Fall keine Überprüfung in der Wirklichkeit mehr stattfinden. Die Schlangenform wäre dann definitiv eine Schlange. Würde im Beispiel die Sinnesdaten-Präzision überwiegen, wird eine potenzielle Gefahr nicht mehr wahrgenommen, erst dann, wenn es schon zu spät ist.       

Die Wirkung von TB lässt sich auf der Basis der Predictive Processing Theorie wie folgt erklären:

  • Falls Bogenschießen mit Freude erfolgt – insbesondere, wenn Bogenschießen als Ressource empfunden wird – wird die Dopaminausschüttung angeregt.
  • Die Sinnesdaten-Präzision bekommt eine größere Bedeutung, ggf. wird sie übergewichtet.
  • Die Wahrnehmung öffnet sich für das Erkennen einer ‚(kleinen) Unsauberkeit‘ in der Ziel- und Schiesstechnik.
  • Diese Offenheit ermöglicht das Erfahren von Problem-Zusammenhängen im Schießen und im Alltag. Die bisherige Überzeugung wird hinterfragt, die blockierende Vorhersage-Präzision untergewichtet.
  • Die Ausbildung von Metaphern und das Auflösen des Problems im Schießen schlägt die Brücke zum Alltag.
  • Eine neue Überzeugung wird neben die alte Überzeugung gesetzt. Die neue Überzeugung ist im Alltag zu stabilisieren, damit die neu Vorhersage-Präzision groß genug werden kann.

Überzeugungen sichtbar zu machen, in Frage zu stellen und ggf. durch neue Überzeugungen zu ersetzen, dies ist adaptiv, ist agil! – Überzeugungen sollten immer nur Hypothesen sein, die sich ggf. als falsch herausstellen.

Man könnte annehmen, dass ähnliche Sportarten (u.a. Speerwerfen, DART, Golf, …) wie Bogenschießen transformativ eingesetzt werden können. Dies mag sein, jedoch gebe ich zwei Aspekte zu bedenken: Bogenschießen knüpft sehr stark an unsere archaischen Wurzeln an, damit könnte u.a. ein hoher Dopamin-Ausstoß verbunden sein. Was aber viel wichtiger ist, dass die archaischen Wurzeln durch sehr viele Metaphern – wie ‚keinen Pfeil mehr im Köcher haben‘ oder ‚ins Schwarze getroffen haben‘ – in unserem Denken verwurzelt sind und diese Verbindungen mittels Jahrzehnten kreativer therapeutischer Veränderungsarbeit [7] gehoben worden sind.

Transformatives Bogenschießen dient dazu, zu lernen, Überzeugungen in Frage zu stellen. Damit werden Überzeugungen adaptiv und öffnen uns die Türen, durch die wir gehen (können).

Weitere Informationen zu den TB-Seminaren finden Sie unter https://www.socialtechnologies.de/training.

 

[1] Lesch H und Forstner U (202119) Zeit – Ein Physiker und eine Philosophin spielen mit der Zeit, Patmos Verlag, kindle Ausgabe

[2] Bayrischer Rundfunk (2022) Meditatives Bogenschießen https://www.youtube.com/watch?v=wY1NF3zguKc

[3] Oswald A, Müller W (2019) Management 4.0 – Handbook for Agile Practices, Release 3, BoD Verlag, Norderstedt Management 4.0

[4] Sterzer P (2022) Die Illusion der Vernunft – Warum wir von unseren Überzeugungen nicht zu überzeugt sein sollten, Ullstein Buchverlage GmbH, Berlin, kindle Ausgabe

[5] DALL-E 2 (2023) https://openai.com/dall-e-2/, zugegriffen am 04.01.2023

[6] Oswald A, Köhler J, Schmitt R (2016) Projektmanagement am Rande des Chaos, Springer, Heidelberg

[7] Schäfer K-H (2018) Therapeutisches Bogenschießen, 2. Auflage, Ernst Reinhardt Verlag München

AI & M 4.0: „Ein Bogenschütze mit einem fantastisch schönen Bogen und goldenen Pfeilen“ – Oder: Auf dem Weg zur Künstlichen Allgemeinen Intelligenz?

Im diesem Blogartikel beschäftige ich mich mit der Erstellung von Text-Zusammenfassungen und Bild-Metaphern. Dies sind wichtige Bereiche jeglicher Informations- und Wissens-Verarbeitung, insbesondere auch im Management und Projektmanagement. – Man siehe hierzu auch meinen Blog-Beitrag vom Dezember 2021.

Ich beschreibe im Folgenden die Benutzung der verwendeten AI-Werkzeuge etwas genauer. – Vielleicht mag der ein oder andere meine Erfahrungen weiterentwickeln.

Da die verwendeten AI-Werkzeuge mehrere Abstraktionsebenen über den in den letzten Blog-Beiträgen verwendeten AI-Werkzeugen liegen und jene über eine recht einfache Benutzerschnittstelle angesprochen werden können, spreche ich von Black-Box AI-Werkzeugen

Für die Erzeugungen von Bild-Metaphern verwende ich die KI midjourney und für die Erzeugung von Text-Zusammenfassungen die KI GPT-3.

Auf die KI midjourney wurde ich über den Artikel „Kunst per Künstlicher Intelligenz“ von Patrick Hannemann aufmerksam [1]. Er stellt dort die Kommunikationsplattform discord.com [2] vor, die die KI midjourney über einen Bot integriert enthält [3].

Ich widme mich zuerst den Bild-Metaphern: Bild-Metaphern können zum Beispiel bei der Ausbildung eines Collective Minds in Teams eine sehr große Rolle spielen. – Sie dienen u.a. der Teamausrichtung und -fokussierung.

Also habe ich ausprobiert, inwieweit sich midjourney für die Kreation von Bild-Metaphern eignet. – Ich starte mit einem Thema zu meinem Bogenschieß-Hobby und gebe dem Bot über den Prompt ‚/imagine…‘ folgende Aufgabe: Kreiere ein Bild zu der Aussage „Ein Bogenschütze mit einem fantastisch schönen Bogen und goldenen Pfeilen“.

Der Bot liefert mehrere Bilder als Vorschläge zurück. Abbildung 1 zeigt das von mir ausgewählte Bild:

Abbildung 1: Erzeugt von der AI midjourney mit der Aussage „Ein Bogenschütze mit einem fantastisch schönen Bogen und goldenen Pfeilen“ [3].

Für mich ist das Ergebnis beeindruckend kreativ und schön!

Ich habe daraufhin getestet, welche Bilder die AI aus der Kurzdefinition von Management 4.0 erzeugt. Abbildung 2 zeigt einen Screenshot-Auszug der vier generierten Bildvorschläge:

Abbildung 2: Screenshot-Auszug der vier Bildvorschläge zur Management 4.0 Definition (im Screenshot enthalten) [3].

Das war wohl etwas abstrakt, die generierten Bilder sind recht nichtssagend 😉.

Eine Kürzung auf die wesentlichen, in der Definition enthaltenen Themen erzeugt jedoch innerhalb von wenigen Sekunden vier recht gute Bild-Metapher Vorschläge:

Abbildung 3: Screenshot-Auszug der vier Bildvorschläge zur Aussage „leader, organization, mindset, self-organization“ (siehe obigen Screenshot) [3].

Ich habe das erste Bild für die weitere Generierung von Versionen ausgewählt und mich schließlich für folgende Bild-Metapher entschieden:

Abbildung 4: Von mir ausgewähltes Bild zur Aussage „leader, organization, mindset, self-organization“ [3].

Dies ist ein Ergebnis, generiert nach ca. 5 Minuten Interaktion mit dem AI-Bot. Wie ich finde: beeindruckend!

Für den Bereich Bild-Metaphern fasse ich zusammen: Selbst öffentlich verfügbare AI-Systeme liefern beeindruckende Bild-Metaphern auf der Basis von Themen (Topics). Topics können aus von AI-Systemen generierten Wissens-Netzwerken (man siehe den Juni 2022 Blog-Beitrag) entnommen werden oder über spezifische Topic AI-Systeme [4], [5] generiert werden.

Legt man folgende Definition für eine Künstliche Allgemeine Intelligenz zugrunde, “Artificial general intelligence (AGI) is the ability of an intelligent agent to understand or learn any intellectual task that a human being can.“ [6], so ist der AI-Bot midjourney vermutlich noch weit von einer AGI entfernt.

Gleichwohl stelle ich für mich selbst fest, dass ich wohl kaum in der Lage bin, mit ähnlicher Kreativität wie diese AI, die oben gezeigten Bilder zu erzeugen.

Überträgt man die Messung des Intelligenzquotienten für Menschen auf AI-Systeme, so dürfte eine Zusammenschaltung von mehreren AI-Systemen schon heute fantastisch hohe Intelligenzquotienten ergeben. Die AI-Systeme, die im Jahre 2019 verfügbar waren, liefern IQ-Werte die bei ca. 25%-50% eines mittleren menschlichen IQ von 100 liegen. – Ein IQ von 50 entspricht in etwa dem IQ eines 6-jährigen Kindes [7], [8], [9]. Sehr große AI-Systeme wie GPT-3, das ich weiter unten verwende, waren in diesen Untersuchungen noch nicht berücksichtigt. – Für GPT-3 dürfte der IQ schon deutlich näher bei 100 liegen.   

Sollte die AGI eines Tages Realität sein, so nehme ich an, dass keine 9 Milliarden AI-Systeme erforderlich sind, um das (kognitive) Intelligenzspektrum von 9 Milliarden Menschen abzubilden. – Wahrscheinlicher ist, dass einige wenige AI-Systeme das kognitive Intelligenzspektrum von Milliarden von Menschen abdecken werden, und dies mit wesentlich höheren IQ-Werten als wir Menschen im besten Fall haben.

Die Ergebnisse der Forschungsarbeit der GPM Fachgruppe Agile Management zum Thema NLP-Verarbeitung (Natural Language Processing Verarbeitung) von Projektmanagement Fragestellungen mittels AI-Systemen zeigen in diese Richtung.

Wir haben verschiedenen AI-Systemen PM Know-How Fragen gestellt, wie sie in einer Prüfung für das IPMA Level D vorkommen könnten. Das Ergebnis ist ziemlich beeindruckend: „Kleinere“ AI-Systeme liefern keine befriedigenden Ergebnisse, meistens sogar mangelhafte Ergebnisse. Jedoch liefert das große System GPT-3 von openai.com in allen! Fragen sehr gute oder gute Ergebnisse: GPT-3 hat hiernach das IPMA Level D Zertifikat mit gut bestanden! – Diese Ergebnisse haben wir auf der diesjährigen IPMA Research Konferenz vorgestellt [10], [11].

Ich widme mich jetzt den Text-Zusammenfassungen mittels GPT-3 [12], [13].

Ich nehme das Gesamtergebnis vorweg: Mein! Versuch mittels GPT-3 sinnvolle Zusammenfassungen von Texten zu erzeugen liefert (bisher) keine wirklich überzeugenden Ergebnisse. Es gibt also aktuell auch noch Wermutstropfen in dieser „schönen neuen AI-Welt“😉.

Ich habe dem AI-System GPT-3 die Aufgabe gestellt, für einen meiner Blog-Artikel eine Zusammenfassung zu erstellen. Ich habe den Beitrag vom September 2021 „Metabetrachtungen: Zur Schnittmenge von Intuitivem Bogenschießen, Künstlicher Intelligenz und Management 4.0“ ausgewählt. Er hat einen Bezug zur obigen Bild-Metapher Abbildung 1 und stellt verschiedene Themen (Bogenschießen, AI und M 4.0) in einen eventuell ungewöhnlichen Zusammenhang und ist damit ein Text, den man wahrscheinlich sonst nirgendwo im Internet finden kann. Die AI kennt also mit ziemlicher Sicherheit keine ähnlichen Texte.

Ich greife auf GPT-3 als Black-Box AI-System zu und nicht wie für andere AI & M 4.0 Blog-Beiträge auf verschiedene AI/ML Bibliotheken. Wie bei der Unterhaltung mit dem AI-Bot midjourney ist auch hier das Abstraktionsniveau der „Ansprache“ sehr hoch.

Um Zugriff auf GPT-3 zu erhalten [13], ist es notwendig, sich bei openai.com zu registrieren. Solange man GPT-3 nicht für produktive Zwecke nutzen will, wird ein budgetierter Zugang von $18 als Geschenk freigegeben. Openai.com orientiert sich für die Freigabe an einer Risiko-Bewertung: Forschungsaktivitäten, wie ich sie hier durchgeführt habe, werden als sandbox-Aktivitäten behandelt und unterliegen keinen Restriktionen. – Dies ist sehr ähnlich den Anforderungen, die im EU AI Act zu finden sind. – Man siehe hierzu meinen Blogbeitrag vom August 2022.

Eine Möglichkeit auf GPT-3 zuzugreifen, ist der Zugriff über das User Interface ‚Playground‘ (man siehe Abbildung 5).

In ersten Versuchen habe ich die sogenannten Presets verwendet (man siehe Abbildung 5, und dort die rot eingefassten Bereiche). – Dies sind vorkonfektionierte Aufgabentypen, u.a. auch für die Erstellung von Zusammenfassungen. Die Ergebnisse waren richtig schlecht und recht oft unsinnig: Teilweise wurden Texte abgerufen, in denen wohl ein Bogenschütze auf die Jagd geht oder der deutsche Text, der zusammenzufassen war (man kann also auch nicht-englischen Text eingeben), wurde „einfach“ übersetzt.

Abbildung 5: GPT-3 playground [14]

Wie ich heute weiss, habe ich mit den presets das Potential von GPT-3 überhaupt nicht angesprochen. – Man kann nämlich über die Prompteingabe mit GPT-3 „reden“, d.h. der AI in Satzform sagen, was sie machen soll. Die Aufgabe „Write a summary in English for the following text using the following topics, Management 4.0, self-organization, instance-based learning, model-based learning:” (siehe Abbildung 5 erster Satz im Eingabefeld) brachte bisher das beste Zusammenfassungs-Ergebnis:

“The article discusses the intersection of intuitive archery, artificial intelligence, and management 4.0. It argues that learning is the key element to align the human system, the technical system neural network, and the social system team or organization to the environment. The article distinguishes between instance-based learning and model-based learning. It argues that learning in management 4.0 is model-based learning, and that instance-based learning is insufficient for learning in a complex context.”

An diesem Ergebnis kann man erkennen, dass GPT-3 in der Lage ist, explorative und abstrahierende Zusammenfassungen zu erstellen. Explorative Zusammenfassungen enthalten lediglich Sätze aus dem Original, die als wichtig erkannt werden. Abstrahierende Zusammenfassungen enthalten neue Sätze, die so nicht im Original enthalten sind.- Die abstrahierende Zusammenfassung ist u.a. an Sätzen wie „The article distinguishes…“ zu erkennen.

Ich habe dieses Ergebnis als bestes ausgewählt, weil dies das einzige Beispiel ist, in dem der Satz „It argues that learning in management 4.0 is model-based learning, and that instance-based learning is insufficient for learning in a complex context.” enthalten ist. Dieser Satz ist eine zentrale Erkenntnis des Blog-Beitrages. Leider sind nicht alle Erkenntnisse enthalten; z.B. wird das Thema Selbstorganisation als zentrales verbindendes Element der drei Bereich, Management 4.0, AI und Bogenschießen, nicht erkannt. Deshalb gebe ich GPT-3 in diesem Fall auch nur die Schulnote ausreichend.

Im Playground können nur Texte eingegeben werden, deren Anzahl an Tokens (ungefähr gleich der Anzahl an Worten), addiert mit der Anzahl an Tokens für die Zusammenfassung, 4000 Tokens nicht überschreiten. Ich habe für die Zusammenfassung 507 Tokens vorgegeben und habe damit noch ca. 3500 Tokens für den eigentlichen zusammenzufassenden Text zur Verfügung. Falls der Text in einer Fremdsprache eingegeben wird, halbiert sich der verfügbare Raum für den Text auf etwa die Hälfte an Tokens: GPT-3 benötigt Raum für die Übersetzung. – Die „Muttersprache“ von GPT-3 ist Englisch! Aus diesem Grund konnte ich auch nur einen Auszug des Blogs verwenden. Aus Gründen der Vergleichbarkeit habe ich für die deutschen und die englischen Texte den Auszug gleich beibehalten und jeweils ca. 1400 Wörtern verwendet. In allen Tests habe ich die von opneai.com empfohlene Stop sequence <|endoftext|> am Ende des Textes eingesetzt.  – Das Verwenden einer Stop sequence zum Anzeigen des Textendes hat einen recht großen Einfluss auf das Zusammenfassungsergebnis.

Statt GPT-3, verwende ich den google-Übersetzer [15] und den Übersetzer deepl.com [17], um einen englischen Text für meinen Blog-Beitrag zu erzeugen. Die Übersetzungen sind sehr ähnlich, wobei meines Erachtens bei genauerer Betrachtung doch manchmal recht große Unterschiede auffallen. So übersetzt zum Beispiel deepl.com „Meta-Betrachtungen“ mit „Meta-observations“ und der google-Übersetzer mit „Meta considerations“. – Dies scheint mir ein nicht unerheblicher Unterschied zu sein.

Google verändert auch in erheblichem Maße die Syntax. So wurde wie hier zu sehen, u.a. der Bindestrich zwischen Meta und consideration einfach entfernt. Groß- und Kleinschreibung und Satzzeichen wurden verändert, so dass selten – aber immerhin geschah es – sich ein vollständig anderer Sinn ergeben hat. Mehrmals wurden ganze Satzteile einfach weggelassen. – Ein schwerwiegender Fehler.

Bei deepl.com ist dies im vorliegenden Beispiel einmal vorgekommen bei google dreimal. Der google-Übersetzer liefert auch leicht andere Ergebnisse, je nachdem, ob man ihn mit einer zu übersetzenden Internetseite füttert oder einer Worddatei, die den Inhalt der Internetseite enthält.

Ich betone dies, weil beide Übersetzer mit AI betrieben werden. Es ist nicht auszuschließen, dass die AI sauber funktioniert, jedoch die Aufbereitung der Daten, also der Texte, nicht fehlerfrei ist. – Versteckte Satzzeichen oder Abschnittszeichen werden unterschiedlich interpretiert. Die AI-Systeme benötigen trotz ihrer „Intelligenz“ Daten in einer wohldefinierten Form. – Es gibt keinen Spielraum für „intelligentes Ausbessern“ wie in der menschlichen Kommunikation. Das macht das Arbeiten mit AI-Systemen nicht selten zu einem Geduldsspiel. Die korrekte Dateneingabe wurde, nach meiner bisherigen Erfahrung, von AI-Erstellern nicht gut dokumentiert.

Um die Restriktion bezüglich des Textumfanges zu umgehen, kann man GPT-3 auch über ein Jupyter Notebook [17] in der Colab-Umgebung [18] ansprechen. – Man beachte, GPT-3 ist in der Colab-Umgebung aufrufbar, obwohl google und openai im Wettbewerb stehen. – Bemerkenswert erfreulich!

Ich habe den Code von [19] verwendet und für meine Aufgabenstellung angepasst. Für den vollständigen Text in Deutsch erzeugt GPT-3 eine deutlich größere explorative Zusammenfassung in Englisch, obwohl ich GPT-3 um eine deutsche Zusammenfassung gebeten habe.

Den mittels deepl.com ins Englische übersetzten Blog-Artikel habe ich einmal als .pdf Datei Seite für Seite eingelesen und alternativ direkt als Text in die Colab-Umgebung eingebracht. In beiden Fällen wurde eine abstrahierende Zusammenfassung erstellt. Die erste Zusammenfassung entspricht der schon bekannten besten Zusammenfassung, die zweite Zusammenfassung ist eine andere:

“The article discusses the intersections of intuitive archery, artificial intelligence, and Management 4.0. Intuitive archery is a form of archery that does not rely on aiming technique, and is used for therapeutic archery in clinics. The author argues that the ability to focus, adapt, and intuition are central elements of Intuitive Archery, which are also important for Management 4.0. The author describes their experience with a Deep Learning course using Tensorflow, and how it has helped them understand the potential for artificial intelligence in project management.”

Ich konnte also an meiner Aufgabenstellung nicht erkennen, dass GPT-3 mit jedem Aufgabendurchlauf dazu lernt. – Eine Aussage, die andere schon getroffen haben [12].

Zusammenfassung: Meine Untersuchungen zu Text-Zusammenfassungen mittels GPT-3 und Bild-Metaphern mittels midjourney zeigen schon recht gute Ergebnisse, jedoch ist Vorsicht geboten, wenn man die Werkzeuge (schon) im produktiven Betrieb benutzen möchte. Jedoch ist schon heute auf einfachen Wegen selbst erfahrbar, dass der Weg in Richtung einer Künstlichen Allgemeinen Intelligenz eingeschlagen wurde.     

 

[1] Hannemann P (2022) Kunst per künstlicher Intelligenz: Mit diesen Tools können Sie das selbst ausprobieren, https://www.chip.de/news/Kunst-per-kuenstlicher-Intelligenz-Mit-diesen-Tools-koennen-Sie-das-selbst-ausprobieren_184386657.html, zugegriffen am 06.09.2022

[2] Discord (2022) Discord.com, Innovative Kommunikationsplattform, zugegriffen am 06.09.2022

[3] midjourney(2022) Forschungsprojekt zu AI, https://www.midjourney.com/home/, zugegriffen am 06.09.2022, zugegriffen am 06.09.2022

[4] Keita Z (2022) Meet BERTopic— BERT’s Cousin For Advanced Topic Modeling, https://towardsdatascience.com/meet-bertopic-berts-cousin-for-advanced-topic-modeling-ea5bf0b7faa3, zugegriffen am 09.04.2022

[5] Dwivedi P (2022) NLP: Extracting the main topics from your dataset using LDA in minutes, https://towardsdatascience.com/nlp-extracting-the-main-topics-from-your-dataset-using-lda-in-minutes-21486f5aa925, zugegriffen am 09.04.2022

[6] Wikipedia (2022) Artificial General Intelligence, https://en.wikipedia.org/wiki/Artificial_general_intelligence, zugegriffen am 06.09.2022

[7] Liu Y, He F, Zhang H, Rao G, Feng Z and Zhou Y (2019) How Well Do Machines Perform on IQ tests: a Comparison Study on a Large-Scale Dataset, Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

[8] Tschopp M, Ruef M (2019) An Interdisciplinary Approach to Artificial Intelligence Testing: Developing an Artificial Intelligence Quotient (A-IQ) for Conversational AI, siehe researchgate.net

[9] Liu F, Liu Y, Shi Y (2020) Three IQs of AI systems and their testing methods, https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/joe.2019.1135, zugegriffen am 05.09.2022

[10] Nuhn H, Oswald A, Flore A, Lang R, (2022) AI-supported Natural Language Processing in project management – capabilities and research agenda, IPMA Research Conference 2022, www.ipma-research-conference.world

[11] Lang R (2022) Kann Künstliche Intelligenz (KI) das Projektmanagement unterstützen? https://www.linkedin.com/feed/update/urn:li:activity:6970285127754997760/,  zugegriffen am 09.09.2022

[12] Romero A (2022) A Complete Overview of GPT-3 — The Largest Neural Network Ever Created, https://towardsdatascience.com/gpt-3-a-complete-overview-190232eb25fd, zugegriffen am 09.08.2022

[13] Willison S (2022) How to play with the GPT-3 language model, https://simonwillison.net/2022/Jun/5/play-with-gpt3/, zugegriffen am 09.08.2022

[14] GPT-3 playground (2022) openai.com, zugegriffen am 09.09.2022

[15] google Übersetzer (2022) https://translate.google.de/?hl=de&tab=rT, zugegriffen am 09.09.2022

[16] Deepl (2022) https://www.deepl.com/translator, zugegriffen am 09.09.2022, verwendet für diesen Blog-Beitrag in der kostenpflichtigen Version deepl Pro

[17] Jupyter Notebooks (2021) https://jupyter.org/, zugegriffen am 02.12.2022

[18] Colab (2021) https://colab.research.google.com/

[19] Soares L (2022) Summarizing Papers With Python and GPT-3, https://medium.com/p/2c718bc3bc88, zugegriffen am 22.07.2022