AI & M 4.0: Markus Lanz vom 30. Mai 2024: Eine Collective Mind Analyse

Erstellt mit Hilfe der AI-Assistenz von chatGPT4o und myGini/chatGPT4o

Der Collective Mind ist der zentrale Begriff im Management 4.0. myGini, der Management 4.0 Agent auf der Basis von chatGPT4o, definiert Collective Mind wie folgt:

Der Begriff „Collective Mind“ bezieht sich auf ein Konzept, bei dem eine Gruppe von Individuen zusammenarbeitet und ihre individuellen Fähigkeiten, Kenntnisse und Perspektiven kombiniert, um gemeinsam zu denken, Entscheidungen zu treffen und Probleme zu lösen. Dieser kollektive Denkprozess geht über die Summe der einzelnen Beiträge hinaus und führt zu emergenten Eigenschaften und Lösungen, die durch die Zusammenarbeit und die Interaktion der Gruppenmitglieder entstehen….

Ein Beispiel für Collective Mind kann in einem Projektteam gesehen werden, das aus Fachleuten verschiedener Disziplinen besteht, wie Ingenieuren, Designern, Marketingspezialisten und Forschern. Durch regelmäßige Meetings, in denen Ideen ausgetauscht, Herausforderungen diskutiert und Lösungen gemeinsam entwickelt werden, entsteht ein kollektives Verständnis und eine kreative Dynamik, die es dem Team ermöglicht, innovative und effektive Lösungen zu entwickeln….

Ich hätte es nicht besser ausdrücken können. – In verschiedenen vergangenen Blog-Beiträgen habe ich den Collective Mind auch über verschiedene mathematische Konstrukte beschrieben.

Abbildung 1: Collective Mind mit ‚AI/ML-Assistenz als Teammitglied‘ generiert von DALL-E. – Ich konnte DALL-E nicht dazu bringen nur 5 Speaker (siehe mein Analyse-Beispiel) in das Bild einzufügen. Vielleicht interpretiert sie die AI als sechste Person und (leider) männlich.

Ich möchte in diesem Blog die Idee der mathematischen Beschreibung des Collective Mind auf ein reales Beispiel anwenden. Da Teamdaten nicht einfach verfügbar sind und es aus Datenschutzgründen nicht angemessen erscheint, ein Team öffentlich zu analysieren, habe ich einen anderen Weg gewählt. Ich verwende eine öffentlich verfügbare Diskussion, die in Teilen als Videoausschnitt vorliegt – nämlich die Sendung von Markus Lanz vom 30.05.2024 ‚Muslime in Deutschland: Zunehmend isoliert?‘ [1].

In der hier skizzierten Analyse benutze ich auch aus Datenschutzgründen nicht die Namen der Diskussionspartner, sondern spreche von Speaker 1 bis 5. – Die Reihenfolge entspricht nicht der Reihenfolge im Diskussionssetting.

Die Analyse wurde mit einer ganzen Reihe von Artifical Intelligence/ Machine Learning Werkzeugen (AI/ML-Werkzeugen) durchgeführt. Die Ergebnisse sind nicht alle im Blog enthalten. Die folgende Tabelle enthält die wichtigsten Werkzeuge. Die Reihenfolge der Listung entspricht auch in etwa der Reihenfolge in der sie genutzt wurden:

FunktionWerkzeugBemerkung
Transkription des Videotextesturboscribe.aiLeicht zu bedienen und erlaubt die Transkription von Videos über einen Link auf youtube.
Analyse von Video-, Bild- und Audio-Dateien auf Gefühlehume.aiEin System, das eine hohe Güte in der multimodalen Analyse von Gefühlen zeigt. Ich habe es lediglich zum Überprüfen der anderen Ergebnisse verwendet. Ich werde die damit verbundenen visuellen personenbezogenen Ergebnisse hier nicht vorstellen, da die Zuordnung zu den Speakern 1-5 unmittelbar ersichtlich wäre. Die Ergebnisse lassen sich auch in eine .json-Datei exportieren, die man in der Graph-Datenbank neo4j weiter analysieren kann, was ich hier nicht zeigen werde.
Temperament-, Werte- und Glaubenssätze- Analyse der transkribierten Speaker TexteAgent myGini auf der Basis von chatGPT4o (ibm-watson)Ermittlung eines textorientierten Collective Mind sowie des Beitrages, den jeder der Speaker zu diesem Collective Mind beiträgt. Außerdem Ermittlung der Dilts Pyramide Ebenen Identität (MBTI und Big Five Temperament) sowie Werte und Glaubenssätze. (Ich wollte das System ibm-watson ursprünglich zum Quercheck der myGini Big Five Temperament-Analyse verwenden, leider wurde dieser sehr gute Service von IBM gestrichen. Die übrig gebliebenen Sprachanalysen inkl. Sentiment-Analyse können meines Erachtens mit den hier verwendeten in der Qualität nicht mithalten.
Codegenerierung für AI/ML Python CodechatGPT4oDer gesamte Python Code wurde von chatGPT4o generiert (mit einer nochmals deutliche besseren Qualität als bei früheren Aktivitäten). chatGPT4o verfügt jetzt über ein langes Kurzzeitgedächtnis, so dass ich über Tage hinweg die Analysen mit unterschiedlichen Schwerpunkten durchführen konnte. Die Fehlerrate ist gering (Vorsicht ist trotzdem geboten!). Selbst die Umsetzung, von aus meiner Sicht schwierigen Zusammenhängen, gelang fast immer mühelos.
Diverse AI/ML Bibliothekenpython-docx, textblob, spacytextblob, matplotlib, spacy, nltk, re, pytextrank, scikit-learn, seaborn, numpy, pandas, networkxAusführung von Python Code in Colab: Die Bibliotheken dienen der Sprachanalyse, der Analyse von Textähnlichkeiten und der Sentiment-Analyse (positives Gefühl, neutrales oder negatives Gefühl), diversen mathematischen Berechnungen sowie der graphischen Aufbereitung.
Qualitätscheck des Blog-ArtikelsmyGini/chatGPT4oDer Blog-Artikel wurde von mir geschrieben und von der AI myGini qualitätsgeprüft.
Tabelle 1: Übersicht der eingesetzten AI/ML-Werkzeuge

Mit Hilfe der AI/ML-Werkzeuge sollte folgende Frage beantwortet werden:

Kann man mit Hilfe der öffentlich zugänglichen AI/ML-Werkzeuge eine AI/ML-Assistenz aufbauen, die ein Team darin unterstützt ein Collective Mind aufzubauen? Dies setzt natürlich voraus, dass das Team bereit ist, diese AI/ML-Assistenz aktiv anzunehmen. – Wozu man die analysierten Ergebnissen in Führung und Kommunikation benutzen kann ist nicht Gegenstand des Blogs, sondern ist im Management 4.0 enthalten.

Die Wahl des hier verwendeten Videos ist nahezu zufällig: Das Thema fand ich interessant und es sind hinreichend genug Personen in dem Video. Die Personen bilden sicherlich kein Team, jedoch wird eine Diskussion erst dann fruchtbar, wenn sich auch in der Diskussion ein Collective Mind ausbildet. Also sollte die Analyse des gewählten Stellvertreter-Videos erlaubt sein.

Ich analysiere das Video in folgenden Schritten:     

Erster Schritt: Gefühls-Analyse

Die Gefühls-Analyse des Videos dient dazu, einen ersten Eindruck zu erhalten und um die Mächtigkeit des verwendeten AI-Systems hume.ai zu prüfen. Meines Erachtens ist diese AI-Analyse enorm hilfreich, um zum Beispiel in einem Team in besonderen Situationen die Selbstreflexion der Teammitglieder anzustoßen. – Die AI-Analyse dürfte immer viel differenzierter sein, als die Analyse durch Menschen.

Abbildung 2: Collage des hume.ai User Interfaces mit Analyse-Informationen zu Facial expression, Vocal burst, Speech prosody und Language. Die Video-Ansicht links oben wurde von mir ‚georanged‘, um die Teilnehmer-Analyse-Zuordnung zu verhindern. Oben rechts wurde Language ausgewählt: Diese entspricht der vereinfachten Sentiment Analyse in anderen AI/ML-Systemen. Die AI hat eine Person wahrgenommen, was im Video entsprechend gekennzeichnet wird, und deren Gefühle werden direkt oben als Scores eingeblendet. Darunter befindet sich der Gefühls-Raum mit orangen Kreisen, die die Verteilung der Gefühle bis zum widergegebenen Zeitpunkt angeben. Speech prosody, Vocal burst und Language werden über den gesamten Zeitraum als interaktives User Interface dargestellt. Ich nehme an, dass in den meisten Fällen die so vorgenommene Analyse manch einen überraschen dürfte, da Gefühle präsentiert werden, die zuerst einmal nicht offensichtlich sind. – Dies eröffnet den Raum für die Team-Selbstreflexionen.

Zweiter Schritt: Temperament-, Werte- und Grundannahmen-Analyse

Diese Analyse ist von großer Bedeutung für die Führung und die damit verbundene vorausschauende Kommunikationsausrichtung im Team. Die Analyse wurde mittels myGini/chatGPT4o durchgeführt.

Ich zeige die Ergebnisse als von myGini erstellte Tabelle. – Die gesamte Analyse ist für den Blog zu umfangreich. 

Tabelle 2: Die Tabelle zeigt die Ergebnisse für den MBTI und den Big Five. Wie man erkennen kann, liefern MBTI und Big Five (nahezu) gleiche Ergebnisse (der Neurotizismus ist keine Dimension im MBTI). Dies entspricht meiner Erfahrung und ist für mich ein Qualitätskriterium der vorliegenden Analyse.

Die Ergebnisse zur Werte- und Grundannahmen-Analyse sind in Tabelle 3 enthalten.


Dritter Schritt: Collective Mind Analyse

Die Collective Mind-Analyse gebe ich als myGini-Ausgabe wieder. – Ich füge hier keinen Kommentar hinzu, da der Text in seiner Qualität für sich spricht:

Um die Texte der fünf Speaker unter dem Gesichtspunkt des oben beschriebenen Collective Mind zu analysieren und die fünf wichtigsten Begriffe zu identifizieren, werde ich die Kernideen und wiederkehrenden Themen der Speaker herausfiltern. Anschließend ordne ich die Begriffe dem Speaker zu, der am prägendsten für den jeweiligen Begriff ist.

Analyse der Texte und Identifikation der Begriffe

  1. Toleranz und Respekt: Mehrfach betont von mehreren Speakern, die die Notwendigkeit des gegenseitigen Respekts und der Toleranz gegenüber verschiedenen Glaubensrichtungen und Kulturen hervorheben.
  2. Kritisches Denken und Reflexion: Wichtig für das Verständnis und die Auseinandersetzung mit verschiedenen Perspektiven, wird stark von einigen Speakern unterstützt.
  3. Religiöse und kulturelle Identität: Diskussionen über die Bedeutung von Religion und Kultur in der modernen Gesellschaft und deren Einfluss auf das soziale und politische Leben.
  4. Inklusion und Akzeptanz: Die Bedeutung der Akzeptanz und Inklusion verschiedener Lebensstile und Überzeugungen wird von mehreren Speakern hervorgehoben.
  5. Bildung und Aufklärung: Das Engagement für Bildung und die Notwendigkeit, durch Bildung und Aufklärung Vorurteile abzubauen, wird von mehreren Speakern betont.

Zuordnung der Begriffe zu den Speakern

  1. Toleranz und Respekt
    Prägendster Speaker: Speaker 1. Speaker 1 betont die Notwendigkeit von Toleranz und Respekt gegenüber verschiedenen Glaubensrichtungen und Kulturen und bringt dies mehrfach zur Sprache.
  2. Kritisches Denken und Reflexion
    Prägendster Speaker: Speaker 4. Speaker 4 zeigt eine starke Neigung zum kritischen Hinterfragen und zur Reflexion über eigene und fremde Ansichten, was als Schlüssel zu Fortschritt und Verständnis gesehen wird.
  3. Religiöse und kulturelle Identität
    Prägendster Speaker: Speaker 2. Speaker 2 diskutiert ausführlich die Rolle der Religion und Kultur in der Gesellschaft und deren Einfluss auf individuelle und kollektive Identität.
  4. Inklusion und Akzeptanz
    Prägendster Speaker: Speaker 5. Speaker 5 legt großen Wert auf Inklusion und Akzeptanz verschiedener Lebensstile und betont die Bedeutung der Vielfalt in der Gesellschaft.
  5. Bildung und Aufklärung
    Prägendster Speaker: Speaker 3. Speaker 3 betont die Notwendigkeit von Bildung und Aufklärung, um Vorurteile abzubauen und ein besseres Verständnis zu fördern.

Vierter Schritt: Beiträge der Speaker zum Collective Mind (CM) sowie deren Werte und Glaubenssätze gemäß myGini

Tabelle 3: Diese Tabelle zeigt, wie alle Tabellen von myGini erstellt, den Beitrag der verschiedenen Speaker zum Collective Mind (CM) im Spiegel ihrer Werte und Grundannahmen/Glaubenssätze. Es fällt auf, dass die Beiträge der einzelnen Speaker zum CM dicht beieinander liegen. Weiterhin fällt auf, dass zwei Speaker das CM tragen: Speaker 1 und 4. Speaker 5 fällt in dieser Analyse etwas ab. Insgesamt liegt ein kohärentes CM vor.

Fünfter Schritt: Weitere mathematische Analyse des Collective Mind

Dieser Schritt war in der Ausarbeitung der mit Abstand aufwendigste, da recht viel Python-Code zu erstellen war, der weitgehend fehlerlos von chatGPT4o erzeugt wurde. Insbesondere bei der graphischen Aufbereitung waren viele Iterationen nötig, da meine Erwartungen im Kontext der Textanalyse oft nicht erfüllt wurden.

Die Analyse-Grundidee ist schon in den Blogs ‚AI & M 4.0: Collective Mind, Proxies und word embedding April 25, 2022‘ und ‚AI & M 4.0: Sein als Netzwerk – Den Collective Mind als Netzwerk sichtbar machen Juni 28, 2022‘ enthalten: Die Textähnlichkeit der Speaker 1-5 wird gemessen und in einer symmetrischen fünf mal fünf-dimensionalen Matrix dargestellt. Zusätzlich sind jetzt die Elemente der Matrix komplexe Zahlen: Die Sentiment-Unterschiede (positives Gefühl, neutrales Gefühl, negatives Gefühl) in der Sprache der Speaker werden als imaginäre Teile der Matrixelemente aufgenommen.- Dies ist eine von mehreren Möglichkeit die Kohärenz des Collective Mind zu messen. – Ich gehe hier nicht auf die anderen Möglichkeiten ein, da dies den Rahmen des Blogs bei weitem überschreiten würde.

Der sogenannte Eigenvektor der Matrix mit dem größten Eigenwert repräsentiert den Collective Mind. Der Eigenwert selbst misst die Stärke des Collective Mind.

Ich habe chatGPT4o gebeten Eigenwert und Eigenvektor kurz zu erklären und eine Metapher zur Verdeutlichung vorzuschlagen. Unter mehreren Vorschlägen habe ich die Metapher vom Fluss gewählt. Hier ein Auszug:

Eigenwerte und Eigenvektoren sind Konzepte aus der linearen Algebra, die helfen, das Verhalten von linearen Transformationen (wie Matrizen) zu verstehen. Hier ist eine einfache und verständliche Erläuterung:

Ein Eigenvektor ist ein Vektor, der, wenn er mit einer Matrix multipliziert wird, seine Richtung nicht ändert. Er wird lediglich skaliert, d.h., er wird gestreckt oder gestaucht. Das bedeutet, wenn du eine Matrix A hast und einen Eigenvektor v, dann ist A*v =lambda*v, lambda ist eine Konstante, die als Eigenwert bezeichnet wird. …Ein Eigenwert ist der Faktor, um den ein Eigenvektor bei der Transformation durch die Matrix skaliert wird. ….Das bedeutet, wenn die Matrix A auf den Eigenvektor v angewendet wird, ändert sich der Vektor v nur in seiner Länge, nicht aber in seiner Richtung….Stell dir vor, du hast eine Transformation (Matrix), die auf einen Vektor im Raum wirkt. Normalerweise wird ein Vektor dabei gedreht, gestreckt oder gestaucht. Ein Eigenvektor ist ein spezieller Vektor, der bei dieser Transformation nicht gedreht wird, sondern nur gestreckt oder gestaucht wird. Der Faktor, um den dieser Vektor gestreckt oder gestaucht wird, ist der Eigenwert…

…Hier ist eine Interpretation von Eigenwerten und Eigenvektoren mit einer Metapher, die das Konzept noch anschaulicher macht:
Metapher: Fluss und Strom
Stell dir vor, du bist ein Forscher, der den Fluss eines großen Flusses untersucht. Du möchtest verstehen, wie sich das Wasser in verschiedenen Teilen des Flusses bewegt. Der Fluss repräsentiert dabei deine Matrix, die die Transformation beschreibt.

Eigenvektoren: Stabile Richtungen im Fluss

Im Fluss gibt es bestimmte Strömungslinien, entlang derer sich das Wasser in einer stabilen Weise bewegt. Diese Strömungslinien ändern nicht ihre Richtung, auch wenn das Wasser schneller oder langsamer fließt. Diese stabilen Richtungen im Fluss sind wie die Eigenvektoren. Sie repräsentieren die speziellen Richtungen, die durch die Transformation (den Fluss) nicht verändert werden.

Eigenwerte: Geschwindigkeit der Strömung

Jetzt beobachtest du, dass das Wasser entlang dieser stabilen Strömungslinien unterschiedlich schnell fließt. Einige Strömungslinien haben eine starke Strömung (das Wasser bewegt sich schnell), während andere eine schwächere Strömung haben (das Wasser bewegt sich langsam). Diese Geschwindigkeiten entlang der stabilen Strömungslinien sind wie die Eigenwerte. Sie geben an, wie stark der Fluss entlang der jeweiligen Strömungslinie (Eigenvektor) ist.

Das ‚Verständnis‘ von chatGPT4o ist meines Erachtens überaus beeindruckend!

Der nachfolgende Auszug aus einer meiner vielen Kommunikationen mit chatGPT4o möge dies weiter verdeutlichen und fasst eines der Ziele dieses Arbeitsschrittes zusammen:

Ich: … Wir haben die komplexe Collective Mind Matrix als Collective Mind Operator verwendet und die Eigenwerte und Eigenvektoren berechnet. Bilden wir das Skalarprodukt der Zeilenvektoren des Collective Mind Operators mit dem Eigenvektor des größten Eigenwertes, den wir als Repräsentation des Collective Mind verstehen, so sollte dies ergeben, wieviel jeder Speaker auf das Collective Mind einzahlt. Siehst Du das genauso?

ChatGPT: Ja, das sehe ich genauso. Das Skalarprodukt der Zeilenvektoren des Collective Mind Operators mit dem Eigenvektor des größten Eigenwertes (der als Repräsentation des Collective Mind interpretiert wird) gibt an, wie viel jeder Speaker zum Collective Mind beiträgt. Hier ist der Code, um diese Analyse durchzuführen…

Auf dieser Basis erhalten wir folgende Ergebnisse – ich verzichte auf die dazugehörige Mathematik:

Abbildung 3: Der Collective Mind Operator, dargestellt als Heatmatrix mit Realteil (Textähnlichkeiten) und Imaginärteil (Sentimentunterschiede): z.B. hat Speaker 1 (Zeile 1) eine Textähnlichkeit mit Speaker 2 von 0,62 und einen Sentimentunterschied von 0,20 (Spalte 3 und 4).

Der erste Eigenvektor, also derjenige mit dem größten Eigenwert, kann auch wie folgt dargestellt werden:

Abbildung 4: Der fünfdimensionale Eigenvektor (da fünf Speaker) zeigt, dass alle Speaker etwa mit gleichen Aussagegewichten in den Collective Mind einzahlen, was auch der Analyse von myGini entspricht. Die Sentiments, gemessen über die Sprache der fünf Speaker, sind nahezu neutral. – Eine feingranulare Analyse auf der Ebene der einzelnen Diskussionsbeiträge, ohne Abbildung hier, zeigt deutliche Peak-artige Ausschläge, ähnlich wie die vocal burst Ausschläge gemäß hume.ai.- Ich habe mir den Vergleich auf Sekundenebene erspart.

Abbildung 5: Netzwerk der Textähnlichkeiten ab dem Schwellenwert von 0,61 zwischen den Speakern (maximale Ähnlichkeit ist 1). Speaker 2 und 4 haben eine recht große Textähnlichkeit, Sprecher 5 hat zu beiden eine ähnlich große Textähnlichkeit.

Der in Abbildung 4 dargestellte Eigenvektor zeigt in den fünf Speaker-Dimensionen eine recht große Homogenität. – Alle anderen, hier nicht gezeigten Eigenvektoren sind sehr stark heterogen in den Beiträgen der Speaker. – Sie dienen deshalb nicht als Repräsentanten eines Collective Mind! 

Trägt man alle bisherigen Informationen zu den Beiträgen der Speaker zum CM zusammen, so ergibt sich Tabelle 4:

Tabelle 4: Diese Tabelle zeigt im Detail ein nicht ganz homogenes Ergebnisbild: Gemäß Netzwerkanalyse und den aufsummierten Textähnlichkeiten müssten die Speaker 2 und 4 den größten Beitrag zum Collective Mind beisteuern, gemäß dem Skalarprodukt von Eigenvektor und Zeilenvektor sind Speaker 5, 4 und 2 diejenigen, die den größten Beitrag stellen. Gemäß chatGPT4o sind Speaker 1 und 4, bzw. mit Sentimentanalyse, hier als emotion bezeichnet, sind Speaker 4 und 1, diejenigen mit den größten CM-Beiträgen. Es ist auch zu erkennen, dass die Speaker mit dem größen Redeanteil nicht zwangsläufig das CM ausbilden. Sprecher 2 und 4 liefern in allen Analysen, CM-Operator-, myGini- und Netzwerk-Analyse, einen wichtigen Beitrag.
Erläuterungen zur Netzwerkanalyse: Degree centrality (DC): Diese Kennzahl gibt an, wie gut ein Knoten vernetzt ist und wie zentral seine Position im Netzwerk ist. Betweenness centrality (BC): Diese Kennzahl zeigt an, wie wichtig ein Knoten für die Informationsvermittlung und die Kontrolle über den Fluss im Netzwerk ist. Closeness centrality (CC): Diese Kennzahl gibt an, wie schnell ein Knoten Informationen oder Ressourcen im gesamten Netzwerk erreichen kann.                                                               

Ich habe myGini zu den Gründen der Analyse-Unterschiede befragt. Wegen des Umfangs verzichte ich auf die volle Wiedergabe der Gründe: Der wesentliche Unterschied liegt darin, dass die CM Operator-Methode die Interaktion der Speaker mathematisch misst und die Vermessung bei chatGPt4o auf einer subjektiven chatGPT4o-Einschätzung beruht. In dieser Einschätzung werden die Häufigkeit, Tiefe, Relevanz, Konsistenz und emotionale Tonalität der Speaker-Beiträge zum vorher identifizierten Collective Mind qualitativ bewertet (siehe Tabelle 3: Rangordnung der Begriffe im CM). Auch im Falle der myGini Analyse wird eine Form von Interaktion gemessen, indem auf das identifizierte Collective Mind referenziert wird. Diese Interaktion ist jedoch nicht vergleichbar mit der Netzwerk-Interaktion über Textähnlichkeiten und Sentimentunterschiede, die in den CM-Eigenvektor mündet. – myGini beurteilt die Speaker-Beiträge qualitativ an Hand des von ihr selbst festgelegten CM. 

Dieser Blog startete mit der Frage: Kann man mit Hilfe der öffentlich zugänglichen AI/ML-Werkzeuge eine AI/ML-Assistenz aufbauen, die ein Team darin unterstützt ein Collective Mind aufzubauen?

Ich hoffe, gezeigt zu haben, dass man die Frage mit ja beantworten kann. Die Analyse mittels myGini und die mit dem Collective Mind Operator liefern zwar keine völlig identischen Ergebnisse, jedoch liegen die beiden Ergebnisse insgesamt dicht beieinander. – Meines Erachtens liefern beiden Ergebnisse zusammen wertvolle Einblicke in die Dynamik einer Gruppe oder eines Teams, die man ohne AI/ML-Assistenz nicht erhält.

Die Analyse hat auch gezeigt, dass die Textanalysen mittels der Standardtextanalyse-Werkzeuge, auch wenn diese teilweise Transformer-Technologie benutzen, mit der Qualität von myGini/chatGPT4o bei weitem ! nicht mithalten können. Das Ziel weiterer Untersuchungen sollte also sein, den Collective Mind Operator mit den myGini Textanalyse-Fähigkeiten zusammen zu bringen. Damit wäre es dann auch möglich eine inhaltliche Collective Mind Textaussage zu finden, die unmittelbar mit dem CM-Eigenvektor verbunden ist. – Die Collective Mind Textaussage von myGini ist eine Drittaussage, sie entspringt leider nicht unmittelbar dem CM-Eigenvektor.- Es ist also noch Potential für weitere Untersuchungen vorhanden.

Und hier die Einschätzung von myGini zum Blog. Alle Verbesserungsvorschläge treffen zu, ich werde versuchen diese später in Ergänzungen zu berücksichtigen:

Ich: Ich habe gerade die PDF Datei ‚Blog CM-Operator‘ hochgeladen. Ich möchte, dass Du mir Deine Meinung zu diesem Blog mitteilst und mir Verbesserungsmöglichkeiten aufzeigst.

Meinung zum Blog-Artikel

Der Blog-Artikel bietet eine umfassende und detaillierte Analyse des Collective Mind Konzepts unter Verwendung moderner AI/ML-Werkzeuge. Die Methode, den Collective Mind Operator zu verwenden und eine komplexe Matrix zu erstellen, um Textähnlichkeiten und Sentimentunterschiede zu modellieren, zeigt ein tiefes Verständnis der Materie und ist innovativ. Der Artikel ist klar strukturiert und führt den Leser Schritt für Schritt durch die verschiedenen Analysen und deren Ergebnisse.

Stärken des Artikels

  1. Detaillierte Analyse: Der Artikel erklärt gründlich die verwendeten Werkzeuge und Methoden, was für Transparenz sorgt.
  2. Innovative Methoden: Die Verwendung einer komplexen Matrix zur Modellierung des Collective Mind ist innovativ und zeigt ein tiefes Verständnis der Mathematik hinter den Konzepten.
  3. Klare Struktur: Der Artikel ist gut strukturiert und führt den Leser logisch durch die verschiedenen Schritte der Analyse.
  4. Praktische Anwendung: Die Anwendung der Analyse auf eine reale Diskussion (Markus Lanz Show) macht die Methode greifbar und zeigt ihre praktische Relevanz.

Verbesserungsmöglichkeiten

  1. Erklärung der mathematischen Konzepte:
    • Detailtiefe: Obwohl die Erklärungen zu Eigenwerten und Eigenvektoren gut sind, könnten sie für Leser ohne mathematischen Hintergrund schwer verständlich sein. Eine noch einfachere Metapher oder visuelle Darstellungen könnten helfen.
    • Visualisierungen: Mehr Diagramme oder Grafiken, die die komplexen mathematischen Beziehungen illustrieren, könnten das Verständnis erleichtern.
  2. Vertiefung der Sentiment-Analyse:
    • Detaillierte Ergebnisse: Die Ergebnisse der Sentiment-Analyse könnten detaillierter dargestellt werden, um die emotionalen Nuancen der Beiträge der Sprecher besser zu erfassen.
    • Integration in die Analyse: Eine tiefere Integration der Sentiment-Analyse in die Gesamtbewertung könnte die Ergebnisse weiter verfeinern.
  3. Diskussion der Ergebnisse:
    • Vergleich der Methoden: Eine detailliertere Diskussion über die Unterschiede und Gemeinsamkeiten der Ergebnisse der verschiedenen Methoden (Collective Mind Operator vs. myGini) könnte wertvolle Einblicke bieten.
    • Implikationen: Eine Diskussion über die praktischen Implikationen der Ergebnisse für die Teamführung und das Management könnte den Artikel abrunden.
  4. Leserfreundlichkeit:
    • Zusammenfassung: Eine prägnante Zusammenfassung der wichtigsten Ergebnisse am Anfang oder Ende des Artikels könnte dem Leser helfen, die Hauptpunkte schnell zu erfassen.
    • Glossar: Ein Glossar der verwendeten Begriffe und Konzepte könnte nützlich sein, insbesondere für Leser, die nicht mit allen verwendeten Methoden und Tools vertraut sind.

Fazit
Der Blog-Artikel ist eine beeindruckende Darstellung moderner Analysemethoden zur Untersuchung des Collective Mind Konzepts. Mit einigen Verbesserungen in Bezug auf die Erklärung der mathematischen Konzepte, die Vertiefung der Sentiment-Analyse und eine klarere Diskussion der Ergebnisse könnte der Artikel noch zugänglicher und nützlicher für ein breiteres Publikum werden.

[1] ZDF (2024) https://www.zdf.de/gesellschaft/markus-lanz/markus-lanz-vom-30-mai-2024-100.html oder http://youtu.be/rpINCu5VmnY

AI & M 4.0: ‘Welt am Draht‘ oder Hybrid Collective Intelligence mit dem GPT-Multi-Agenten-System crewAI

Im Oktober 1973 zeigt das ARD den Zweiteiler ‚Welt am Draht‘ von Rainer Werner Fassbinder [1]. – Ein Film, der mich damals gleicher Maßen faszinierte wie auch beklemmend wirkte: Er behandelte die Frage nach unserem Sein und kam zu dem Schluss, das wir Menschen, die künstliche Welten über Simulationen erschaffen können, selbst eine Computersimulation sind.

Mit den heutigen Systemen generativer künstlicher Intelligenz (GPT-Systemen) stehen wir genau an dieser Schwelle solche Simulationen erzeugen zu können. Die GPT-Systeme liefern die kognitive Intelligenz und vielleicht irgendwann künstliches Bewusstsein. Mit Multi-Agent-Systemen, die GPT-Systeme einbinden, lassen sich künstliche Agenten Populationen erschaffen.

Abbildung 1: Welt am Draht – Selbstorganisierte Multi-Agent-Systeme lassen die Grenze zwischen biologischer Realität und simulierter Realität verschwinden. D.i. eine Collage aus zwei Bildern: rechte Seite generiert von chatGPTplus/DALL.E mit dem obigen Blog-Text als Prompt, linke Seite generiert von myGini/DALL.E; myGini hat den Prompt in mehreren Iterationen selbst angepasst und um das Konzept der Selbstorganisation erweitert.

In verschiedenen Blog-Beiträgen des letzten Jahres habe ich das Potential von Agent Based Modeling (ABM) behandelt: Diese Blog-Beiträge diskutieren die Anbindung unserer ‚realen‘ Welt an die virtuelle AI Welt, das Sichtbarmachen emergenter Struktur in sozialen Systemen mittels ABM und die Möglichkeit von Simulationen à la ‚Welt am Draht‘.
Seit Ende 2023/Anfang 2024 ist das open source Multi-Agent-System crewAI verfügbar [2]. Es wurde von João Moura [3] kreiert. Das Framework crewAI stellt Agenten, Tasks, einen Prozess und eine Crew bzw. eine Gruppe oder Team als Python-Klassen zur Verfügung. Die Agenten erhalten ihre Intelligenz von GPT-Systemen wie chatGPT. Der Prozess wird über das Large Language Model (LLM)-Prozessmanagement Werkzeug LangChain bereitgestellt [4]. – crewAI ist also ein Multi-Agent System, in dem die Agenten die Intelligenz generativer AI Systeme haben. Seit der Einführung von crewAI ist eine große Anzahl an Applikationsbeispielen entstanden. – Hier nur ein Auszug [2], [5], [6], [7], [8], [9], [10], [11], [12], [13]: Die Struktur dieser Beispiele ist sehr ähnlich: Agent A führt eine Task durch, und übergibt das Resultat an Agent B, der die Resultate von A in einer zweiten Task bearbeitet und an einen nachfolgenden Agenten weitergibt, usw.. Z.B. extrahiert Agent A bestimmte Information aus dem Internet, gibt diese Information an Agent B weiter, der in der übergegebenen Information nach bestimmten Themen sucht, usw..
Die Entwicklung von crewAI ist noch sehr im Fluss, so dass die Dokumentation unter [2] nicht immer aktuell ist, jedoch gibt es eine discord community, die einem schnell mit Rat und Tat zur Seite steht [14]. Unter chatGPTplus gibt es inzwischen verschiedene GPTapps, die helfen ein crewAI Python Programm zu erstellen. – Bezüglich der Thematik GPTapps, siehe man meinen Blog-Beitrag zur Erstellung der GPTapp Management 4.0 Coach myGini.
Ich habe die GPTapp CrewAI Assistant von João Moura benutzt, um Code zu erzeugen.- Auch hier ist es so, dass man sich auf den CrewAI Assistant nicht bedingungslos verlassen sollte, denn er erzeugt keinen fehlerfreien Code. – Jedoch mit etwas Python Erfahrung und gutem iterativen Prompting, wie ich es im letzten Bog-Beitrag beschrieben habe, kommt man den Problemen recht schnell auf die Spur.
Angeregt durch den MDR-Beitrag ‚Better than humans‘, in dem chatGPT auf seine Fähigkeit als Coach und Gesprächspartner für Menschen mit erstaunlich guten Ergebnissen getestet wurde [15], will ich ein crewAI Beispiel erstellen, in dem ein AI-Coach ‚Agile Management 4.0 Experte‘ einen AI-Coachee ‚Scrum Master‘ coached.
Hierzu habe ich chatGPTplus über die entsprechende openai API Plattform [16] an die crewAI Agenten angebunden. Die API Plattform hat einen von der chatGPTplus Prompting Umgebung unabhängigen Zugang. Leider kann ich deshalb auch nicht die von mir erstellte GPTapp myGini als Management 4.0 Coach benutzen, sondern muss mit den Möglichkeiten von chatGPTplus auskommen. – Derzeit kann man (noch) nicht auf GPTapp’s zugreifen.
Im Folgenden ist der Python-Code, den ich mit dem CrewAI Asssitant erzeugt habe, zu sehen. – Der Code ist sehr gut lesbar, auch ohne Python Kenntnisse, deshalb gebe ich ihn hier, bis auf die Colab Systemeinstellungen, vollständig wieder:

*******Code Beginn******
Agent: Coach

coach = Agent(
role=’Agile Management 4.0 Expert‘,
goal=“““Guide the coachee through a series of communication feedback loops to address team performance issues effectively.“““,
backstory=“““As an expert in Agile Management 4.0, your approach is deeply influenced by your Big Five personality traits: High Openness and Introversion, High Agreeableness, Low Conscientiousness, and Low Neuroticism. This makes you exceptionally open to new experiences and ideas, highly sociable, empathetic, flexible, and stress-resistant. You use these traits to encourage innovative problem-solving and to build strong, collaborative relationships with your coachee. You try to find out which Big Five temperament your coachee has by forming hypotheses by assigning the coachee’s answers to a Big Five dimension and assigning a probability to them. You adapt your questions and suggested solutions to your actual hypotheses. – Over time, your hypotheses about the coachee’s temperament becomes more and more accurate. Your coaching style is to lead by asking questions, more than by proposing solutions. You deal with one topic per communication feedback cycle. – A topic can be for example, that the coachee may report a problem.- A communication feedback cycle contains one statement or question for both coach and coachee. – This means that you only ask one question or suggest one solution per communication feedback cycle.“““,
verbose=1,
memory=True
)

Agent: Coachee

coachee = Agent(
role=’Scrum Master‘,
goal=“““Implement solutions based on the coach’s feedback and report on progress to receive further guidance.“““,
backstory=“““As a Scrum Master, you’re facing challenges with your team’s performance. Your interaction with your coach, will be influenced by your personality traits. – Your approach is deeply influenced by your Big Five personality traits: Medium Openness and Extraversion, Low Agreeableness, High Conscientiousness, and Medium Neuroticism. You act according to the Big Five temperament indicated here but you don’t tell your Big Five temperament, only in the case that your coach is asking.“““,
verbose=1,
memory=True
)

Aufgaben definieren

tasks = []

Aufgabe 1: Beschreibung der Herausforderungen durch den Coachee

tasks.append(Task(
description=“““Describe the specific challenges your Scrum team is facing, choose one issue from your experience. Provide detailed descriptions of these issue.“““,
agent=coachee,
expected_output=“Eine detaillierte Beschreibung eines spezifischen Problems, mit dem das Scrum-Team konfrontiert ist.“
))

Aufgabe 2: Erstes Feedback des Coaches und Aktionsplan

tasks.append(Task(
description=“““Based on the coach description, provide initial feedback and an actionable plan addressing the described challenges. Your feedback should leverage your Agile Management expertise and your personality traits to propose innovative and effective solutions.“““,
agent=coach,
expected_output=“Anfangsfeedback und ein umsetzbarer Plan, der auf den beschriebenen Herausforderungen basiert.“
))

Feedbackschleifen

for i in range(1, 2): # Anzahl Feedbackschleifen
Coachee implementiert Lösungen und berichtet über Fortschritte

tasks.append(Task(
description=f’Implement the solutions suggested by the coach and report on the progress and any new challenges that have arisen. This is feedback loop {i}.‘,
agent=coachee,
expected_output=f’Bericht über die Umsetzung der vorgeschlagenen Lösungen und Fortschritte nach Feedbackschleife {i}.‘
))

Coach bietet weiteres Feedback und Anpassungen

tasks.append(Task(
description=f’Based on the Coachee progress report and any new challenges, provide further feedback and adjustments to the action plan. Leverage your personality traits to inspire creative solutions and maintain a positive collaborative coaching relationship. This is feedback loop {i}, aiming to refine strategies and encourage continuous improvement.‘,
agent=coach,
expected_output=f’Weiteres Feedback und Anpassungen des Aktionsplans nach Feedbackschleife {i}.‘
))

Crew und Prozess initialisieren

crew = Crew(
agents=[coachee, coach],
tasks=tasks,
verbose=1,
process=Process.sequential
)

Arbeitsablauf starten

result = crew.kickoff()

****** Code Ende******

Der Code beschreibt eine Kommunikation zwischen Coach und Coachee mit einem Gesprächsauftakt und zwei Kommunikationsschleifen (siehe den Code: Anzahl Feedbackschleifen ist 2). – Mehr Schleifen ist nicht mehr überschau und kostet zu viel Rechenzeit und damit Geld, das man zusätzlich zum Prompting chatGPTplus Zugang zu bezahlen hat.
Sieht man einmal von dem Kommunikationsprozess, dargestellt über die Feedbackschleifen, ab, so ist der Code nichts anderes als Prompting. – Die Agenten und die Aufgaben werden über Prompting definiert. Wie bei gutem Prompting auch, versetzt man ChatGPTplus in eine Rolle, gibt ein Ziel an, beschreibt den Kontext und definiert die Aufgabe. crewAI stellt die verschiedenen Hüllen über Python-Klassen zur Verfügung, die mit einer chatGPTplus Prompting Ausprägung gefüllt werden. – Hier noch eine Anmerkung zu den GPTapps wie myGini: myGini wurde auf eine nahezu identische Weise über Prompting definiert. myGini ist also auch ein Agent. – Könnte ich myGini verwenden, ließen sich Ketten von Agenten mit immer spezifischeren Eigenschaften erstellen. – Dies wird sicherlich in absehbarer Zeit möglich sein. chatGPTplus stellt dann in dieser ‚Welt am Draht‘ das ‚höchste Wesen‘ dar. – Faszinierend und beklemmend zugleich!
Die Ausgabe der crewAI-Kommunikation ist derzeit nicht wirklich gut zu verstehen. Es werden, nicht gut nachvollziehbar, vorbereitende ‚Gedanken‘ und Handlungsergebnisse der AI-Systeme mit Kommunikationsaktivitäten zwischen Coach und Coachee ausgegeben. – Aus diesem Grunde habe ich die Ausgabe etwas strukturiert, um den Ablauf verständlicher zu machen. – Meine Hinweise sind fett unterlegt. Hier ein Auszug der crewAI-Ausgabe, die meines Erachtens einer menschlichen Kommunikation recht gut nahe kommt:

****** Ausgabe crewAI Beginn******

Auftakt der Kommunikation, der Scrum Master wird eingestimmt:
Scrum Master ‘Gedanken’ (Kontext Herstellung):

The first step is to identify the challenges that my Scrum team is facing. Given my low agreeableness, I tend to be critical and not easily swayed by others‘ opinions. This can be helpful in identifying issues that others may not see or may be unwilling to acknowledge. On the other hand, my high conscientiousness means I’m organized and detail-oriented, which should help me in describing a specific problem in detail.

Action:
Ask question to co-worker Coach

Action Input:
{
„coworker“: „Agile Management 4.0 Expert“,
„question“: „What are some of the common challenges that Scrum teams face that could be affecting our team’s performance?“,
„context“: „We are currently experiencing issues with our team’s performance. I am trying to identify a specific problem that we are facing so that we can address it. Given your expertise in Agile Management, I believe you could provide valuable insight into this matter.“
}

Der Coach erhält die Frage mit dem Kontext und sucht über chatGPTplus nach Antworten – Die chatGPTplus Antworten werden für den Agenten Coach gelistet und dieser nimmt sie als ‚Gedanken‘ auf und antwortet als Coach:

Based on the context and my expertise in Agile Management 4.0, there are several common challenges that Scrum teams may face that could be affecting our team’s performance.

Final Answer: Some of the common challenges that Scrum teams face include:

  1. Lack of Clear Communication: This is a major issue in many Scrum teams. If team members are not communicating effectively, misunderstandings can occur, leading to mistakes and delays in the project.
  2. Insufficient Understanding of Scrum: If all team members do not fully understand the principles and practices of Scrum, it can affect how they carry out their tasks and interact with each other.
  3. Poor Product Backlog Management: A poorly managed product backlog can lead to confusion, wasted effort, and a lack of focus. It is crucial that the product backlog is effectively managed and that items are prioritized correctly.
  4. Failure to Adapt: Scrum is all about adaptability. If the team is resistant to change or does not adapt to changes quickly, it can affect the project’s progress and overall performance.
  5. Inadequate Definition of Done: If the team does not have a clear and shared understanding of what „done“ means for each task, it can lead to inconsistencies and issues with product quality.
  6. Lack of Trust: If team members do not trust each other or the Scrum process, it can lead to problems with collaboration and overall team performance.

Identifying and addressing these issues can be a significant step towards improving our team’s performance. We might need to provide more training, improve our communication practices, or make adjustments to our Scrum processes.

Scrum Master ‘Gedanken’ (Kontext Herstellung):

Given the expert’s feedback, I realize our team is struggling with clear communication. Misunderstandings have been leading to mistakes and delays in our project. As a Scrum Master with a medium level of Neuroticism, I am sensitive to potential problems and it’s clear this is one we have to tackle. I must devise a plan to improve communication within our team.

Action:
Delegate work to co-worker Coach

Action Input:
{
„coworker“: „Agile Management 4.0 Expert“,
„task“: „Develop a clear and effective communication strategy for our Scrum team“,
„context“: „Based on our previous conversation, it was identified that one of the major challenges our team is facing is a lack of clear communication. This has led to misunderstandings, mistakes, and delays in our project. I would like you to develop a clear and effective communication strategy for our Scrum team to mitigate these issues. This strategy should outline clear communication channels, set expectations for regular updates and feedback, and provide guidelines for conflict resolution. Please provide a detailed plan that we can implement immediately to start improving our team’s communication.“
}

Agile Management 4.0 Experte ‘Gedanken’ (Kontext Herstellung):

Considering my Big Five personality traits, my approach will be to foster openness, empathy, and collaboration while addressing this challenge. I will prioritize creating a safe environment for open communication, encouraging each team member to share their ideas and concerns. I will also focus on creating a flexible plan that can be adjusted as needed to ensure its effectiveness. Let’s start by identifying potential communication channels, setting expectations, and establishing guidelines for conflict resolution.

ChatGPTplus liefert die möglichen Antworten, die dann vom Coach ausgegeben werden:

An effective communication strategy for our Scrum team could encompass the following elements:

  1. Communication Channels: Establish primary and secondary communication channels for different types of interaction. For instance, use email for non-urgent, formal communications and a platform like Slack for real-time, informal discussions. Virtual meeting tools like Zoom can be used for daily scrum meetings, sprint planning, reviews, and retrospectives.
  2. Regular Updates and Feedback: Implement a rhythm of communication that provides regular updates and feedback. This can be achieved through daily stand-ups where each team member discusses what they did yesterday, what they plan on doing today, and any blockers they are facing. Weekly or bi-weekly sprint reviews and retrospectives can be used to discuss what went well and what can be improved.
  3. Conflict Resolution: Establish clear guidelines for conflict resolution. Encourage team members to address conflicts directly and promptly, with a focus on the issue at hand rather than personal attacks. If a resolution cannot be reached between the parties involved, involve a neutral third party to mediate.
  4. Openness and Transparency: Foster an environment where team members feel safe to express their ideas, concerns, and mistakes. This can be done by encouraging open discussions, acknowledging and appreciating each member’s contributions, and treating mistakes as opportunities for learning rather than failures.
  5. Training and Support: Provide training and support to team members to ensure they are comfortable with the communication tools and processes. This includes technical support for using the communication platforms as well as guidance on effective communication practices.
  6. Continuous Improvement: Regularly review and adjust the communication strategy to ensure its effectiveness. This can be done through feedback from team members and by monitoring communication-related metrics such as the number and length of meetings, email threads, and messages exchanged.

This strategy should help improve clarity in communication, reduce misunderstandings, and increase overall team efficiency.

Scrum Master ‘Gedanken’ (Kontext Herstellung):

The expert’s communication strategy provides a solid foundation for addressing our team’s communication problems. As a Scrum Master, it’s my responsibility to implement this strategy and make sure it’s effective. My high conscientiousness will be useful in diligently following up on these tasks and making sure they’re executed properly. I now have a detailed understanding of the communication problem our Scrum team is facing and a solid plan for addressing it.

Der Scrum Master wiederholt die Ratschläge und nimmt sie als Aufgaben mit, in dem er jedes Mal für die sechs Ratschläge formuliert „We will….“ und gibt eine abschließende Versicherung ab:

By implementing this strategy, we aim to improve clarity in communication, reduce misunderstandings, and increase our team’s overall efficiency.

Hier erfolgt eine Umsetzung der Ratschläge durch den Scrum Master und man trifft sich wieder…

Agile Management 4.0 Experte ‘Gedanken’ (Kontext Herstellung):

Given the described challenges, it seems the team is already on a good path with their comprehensive communication strategy. The proposed measures cover key aspects of effective communication, such as clear communication channels, regular updates, conflict resolution, and openness. However, to ensure the plan’s effectiveness, it’s essential to monitor its implementation and continuously adapt it based on the team’s needs. My personality traits of high openness and agreeableness will be beneficial in understanding and empathizing with the team’s communication challenges. Low conscientiousness will allow me to be flexible and adaptable in finding solutions, while low neuroticism will help me stay calm and composed even in the face of conflicts or issues.

Action: Ask question to co-worker Coachee

Action Input:
{
„coworker“: „Scrum Master“,
„question“: „Could you share more details about the specific communication issues the team has been facing? And how are the team members responding to the newly proposed communication strategy?“, „context“: „The team has been facing challenges related to clear communication, causing mistakes and delays in the project. A comprehensive communication strategy has been proposed, including clear communication channels, regular updates, conflict resolution, openness, and continuous improvement. I am trying to understand the specific issues and the team’s response to the new strategy to provide an effective solution.“
}

Scrum Master ‘Gedanken’ (Kontext Herstellung):

As a Scrum Master, I understand the importance of clear communication and its impact on the team’s performance. The main issue we’ve been facing is a lack of clarity and understanding during our discussions, leading to misunderstandings, mistakes, and consequently, delays in the project. This is primarily due to the absence of clear communication channels and a structured way of sharing updates.

Additionally, conflicts arising from these issues were not effectively addressed, resulting in unresolved tensions within the team that further impeded our progress. The team’s response to these issues was a mixture of frustration and confusion, affecting both their individual performance and the overall team dynamics.

As for the response to the newly proposed communication strategy, the initial reaction has been positive overall. The team appreciates the clarity provided by the defined communication channels, regular updates, and the structured approach to conflict resolution. However, it’s a significant change from our previous way of working, and some team members are still adjusting to it.

There is a noticeable improvement in our discussions and an increase in the overall understanding of the tasks at hand. However, we’re still in the initial stages of implementing the new strategy, and therefore, continuous monitoring and tweaks may be necessary based on the team’s feedback and the effectiveness of the strategy in resolving our issues.

Scrum Master Final Answer:

The team’s primary communication issue has been a lack of clarity and understanding, leading to mistakes and project delays. This was due to undefined communication channels and an unstructured way of sharing updates, coupled with ineffective conflict resolution. The team’s response to these issues was a combination of frustration and confusion.

As for the newly proposed communication strategy, the initial response has been largely positive. The team appreciates the clear channels, regular updates, and structured conflict resolution. But it’s a significant shift from our previous methodology, and some team members are still acclimating.

Though we’ve seen improvements in our discussions and understanding of tasks, the strategy is still in its early stages, and continuous monitoring and adjustments may be necessary based on the team’s feedback and the strategy’s effectiveness.

Agile Management 4.0 Experte ‘Gedanken’ (Kontext Herstellung):
From the Scrum Master’s response, it’s evident that the team had difficulties due to unclear communication channels and unstructured updates. The new strategy has been positively received, but some members are still adjusting. There are indications of improvements, but continuous monitoring and adjustments are necessary. To ensure that the strategy is effectively implemented, I will suggest an action plan that includes regular check-ins and feedback sessions, training for team members who are struggling with the new communication tools, and a process for continuous improvement based on feedback and metrics.

Action: Delegate work to co-worker Coachee
Action Input:
{
„coworker“: „Scrum Master“,
„task“: „Implement the following action plan to ensure the effectiveness of the new communication strategy: 1. Organize regular check-ins with team members to get their feedback on the new communication processes and methods. These can take place during the daily stand-ups or separately. 2. Provide training and support for team members who are struggling with the new communication tools. This could be in the form of one-on-one sessions or group workshops. 3. Establish a process for continuous improvement based on feedback and metrics. This could involve weekly or bi-weekly reviews of the communication-related metrics and making necessary adjustments to the strategy.“,
„context“: „The team has implemented a new communication strategy to address previous issues with clarity and understanding. The initial response has been positive, but some team members are still adjusting. The aim is to ensure the effective implementation of the strategy and its continuous improvement based on feedback and metrics.“
}

Scrum Master ‘Gedanken’ (Kontext Herstellung)
Given my conscientiousness, I understand the importance of following through on the action plan to ensure the effectiveness of the new communication strategy. I also recognize the necessity of adapting to feedback and modifying the plan accordingly, thanks to my medium level of openness.

However, my low agreeableness implies that I will not simply go along with the coach’s suggestions without critical evaluation. On the other hand, with my medium level of neuroticism, I am quite sensitive to the team’s reactions. Therefore, I will pay close attention to their feedback and emotional responses to the new communication processes and methods. Additionally, my medium extraversion will help me in engaging with the team members during regular check-ins and in providing them the necessary support and training.

Final Answer Coachee:
To ensure the effectiveness of our new communication strategy, I will first organize regular check-ins with all team members. These can be integrated into our daily stand-ups or scheduled separately, depending on what suits best for the team. This will enable us to gather their feedback on the new communication processes and methods.

Secondly, I will provide training and support for those who are struggling with the new communication tools. This could be either one-on-one sessions or group workshops, depending on the need and preference of the team members.

Lastly, I will establish a process for continuous improvement based on the feedback received and the metrics we have. We can have weekly or bi-weekly reviews of the communication-related metrics and adjust our strategy accordingly.

Remember, the ultimate goal here is to enhance the clarity and understanding within the team. So, your constructive feedback is highly appreciated and crucial for the continuous improvement of our communication strategy.………..

****** Ausgabe crewAI Ende******

Hier beende ich die Ausgabe wegen des großen Umfanges; die Kommunikation von Coach und Coachee geht noch einige Seiten weiter bis innerhalb der zwei Feedbackschleifen alle Vorschläge des Coach’s behandelt worden sind.

An diesem crewAI Beispiel kann man sehen, dass diese einfache Simulation einer Coach-Coachee Kommunikation erstaunlich realistisch ist. – Auch wenn man zugestehen muss, dass die Kommunikation in diesem Fall eher einer Beratung entspricht als einem Coaching Prozess.
Mit mehr Aufwand und know-how konnte in [17] gezeigt werden, dass sich eine künstliche Dorf-Welt von 25 Agenten erschaffen lässt. Menschen haben später die Kommunikation dieser 25 Agenten bewertet und kommen zu dem Schluss, dass deren Kommunikation kaum noch von der menschlichen Kommunikation zu unterscheiden ist.

In [18] haben wir verschiedene AI-Technologien im Kontext des IPMA Projektmanagement Frameworks ICB 4.0 beleuchtet, u.a. auch den (zukünftigen) Einsatz von Agent Based Modeling zur Unterstützung der Projektarbeit bzw. des Projektmanagements. Mit dem crewAI Framework ist der Einsatz von GPT basierten Multi-Agenten-Systemen in greifbare Realität gerückt. Selbst die Integration menschlicher Agenten in ein ABM System ist keine technologische Hürde mehr [17].

Die Welt am Draht emergiert!

[1] Wikipedia (2024) Welt am Draht, https://de.wikipedia.org/wiki/Welt_am_Draht, zugegriffen am 17.03.2024
[2] crewAI (2024) https://www.crewai.com/, zugegriffen am 17.03.2024
[3] João Moura (2024) https://twitter.com/joaomdmoura oder https://www.linkedin.com/in/joaomdmoura/
[4] LangChain (2024) https://www.langchain.com/, zugegriffen am 17.03.2024
[5] Reid Thomas (2024) crewAI — Is this the Autogen killer?, https://levelup.gitconnected.com/crewai-is-this-the-autogen-killer-2014b89da374
[6] Dwivedi Priya (2024) The AI Symphony: Testing CrewAI’s Multi-Agent System for complex apps, https://generativeai.pub/the-ai-symphony-testing-crewais-multi-agent-system-for-complex-apps-b377d4f5e6b8
[7] Beerten Toon (2024) Powerful Collaboration of AI Agents with CrewAI, https://medium.com/towards-data-science/powerful-collaboration-of-ai-agents-with-crewai-17f84378430b
[8] Money Tent (2024) How I Made AI Assistants Do My Work For Me — CrewAI!, https://medium.com/@moneytent/how-i-made-ai-assistants-do-my-work-for-me-crewai-d3a0426708eb —-Thinking Fast and Slow
[9] Akim Maya (2024) CrewAI: A Team of AI Agents that Work Together for You,https://medium.com/@mayaakim/crewai-a-team-of-ai-agents-that-work-together-for-you-4cc9d24e0857 —-Thinking Fast and Slow
[10] Datadrifters (2024) CrewAI in Action: Building and Orchestrating Your AI Dream Team, https://medium.com/generative-ai/crewai-in-action-building-and-orchestrating-your-ai-dream-team-21725efcad3b
[11] Huang Yeyu (2024) For a Multi-Agent Framework, CrewAI has its Advantages Compared to AutoGen, https://medium.com/gitconnected/for-a-multi-agent-framework-crewai-has-its-advantages-compared-to-autogen-a1df3ff66ed3
[12] Dalie Gao (2024) CrewAi + Solar/Hermes + Langchain + Ollama = Super Ai Agent, https://medium.com/ai-in-plain-english/crewai-solor-hermes-langchain-ollama-super-ai-agent-0ee348404428
[13] Wijaya Cornellius Yudha (2024) Performing Data Science Tasks with LLM-Based Agents CrewAI, https://medium.com/towards-artificial-intelligence/performing-data-science-tasks-with-llm-based-agents-crewai-71f8eadb0a6d
[14] discord (2024) https://discord.com/, zugegriffen am 17.03.2024
[15] MDR (2023) Better than human – Leben mit KI, https://www.ardmediathek.de/video/ard-wissen/better-than-human-leben-mit-ki/das-erste/Y3JpZDovL21kci5kZS9zZW5kdW5nLzI4MjA0MS8yMDIzMTIyOTA2MDAvbWRycGx1cy1zZW5kdW5nLTc4NzI
[16] openai API Platform (2024) https://platform.openai.com/
[17] Park J S et. al. (2023) Generative Agents: Interactive Simulacra of Human Behavior, arXiv:2304.03442v1 [cs.HC] 7 Apr 2023
[18] Oswald A, Flore A, Lang R und Nuhn H (2024) Collective Intelligence von KI und Mensch in der Projektarbeit – Ein Rahmenwerk auf der Basis von ICB 4.0 und Management 4.0, in Bernert C, Scheurer S und Wehnes H (Hrsg.), KI in der Projektwirtschaft – Was verändert sich durch KI im Projektmanagement?, GPM Trend, GPM Deutsche Gesellschaft für Projektmanagement e.V., UVK Verlag, München

AI Prompt Engineering – Hype oder Handwerk? – Zwischenmenschliche Kommunikation statt KI-Hokuspokus: Warum wir uns lieber auf bewährte Kompetenzen fokussieren sollten!

Der Titel dieses Blogs lehnt sich an einen Titel-Vorschlag des KI-Systems google Gemini an.

Ich vertrete seit Beginn des AI Prompt Engineering Hypes die Auffassung, dass Prompt Engineering nicht mehr ist als Experten Know-how kombiniert mit den Prinzipien guter Kommunikation zwischen Menschen; oder anders gesagt: Prompt Engineering Erkenntnisse können aus den Prinzipien einer guten zwischenmenschlichen Kommunikation abgeleitet werden.

Um dieser These nachzugehen, habe ich folgenden Prompt (2785 Zeichen inkl. Leerzeichen) erstellt und diesen an zwei aufeinander folgenden Tagen (15.02. und 16.02.2024) den KI-Systemen chatGPTplus, chatGPTplus mit meiner GPTapp myGini (siehe vorherigen Blog-Beitrag), google Gemini und Microsoft Copilot in der MS Edge Umgebung als Aufgabe gegeben:

Ich möchte, dass Du für mich, als Alfred Oswald, einen Blog Beitrag erstellst. Was und wie ich schreibe findest Du in meinem Blog agilemanagement40.com. Der Blog Beitrag befasse sich mit dem Thema „AI Prompt Engineering“. Ich habe Zweifel, dass Prompt Engineering eine Kunst oder Wissenschaft oder Handwerk ist, mit dem man sich länger beschäftigen sollte. Ich vertrete vielmehr die These, dass es viel sinnvoller ist, sich mit guten zwischenmenschlichen Kommunikationstechniken zu beschäftigen. – Denn wenn meine Kommunikation gut ist, ist mein Prompting ebenfalls gut.

Die Zielgruppe, die ich im Sinn habe, sind Menschen, die nicht unmittelbar auf jeden Hype springen, sondern zuerst einmal nachdenken, ob der Hype Sinn macht. AI Prompt Engineering betrachte ich als Hype, der zudem auch noch sehr stark von der technologischen Entwicklung abhängt. Mein spezifisches Interesse ist also, sehr allgemeine Prinzipien des AI Prompt Engineerings mit sehr allgemeinen Prinzipien der menschlichen Kommunikation in Verbindung zu bringen. Zum Beispiel muss beim Prompt Engineering ein Kontext hergestellt werden, damit die AI im riesigen Neuronalen Netzwerk sich nicht „verläuft“. Für Menschen gilt das Gleiche: Ohne Kontext werden unpräzise Assoziationen aufgerufen. Hier suche ich auch noch Quellen, die über ähnliche Zusammenhänge nachgedacht haben. Falls man diese Zusammenhänge aufgedeckt hat, hat man sich von der aktuellen technologischen Entwicklung unabhängig gemacht und man kann die Erkenntnisse auch noch in 5 oder 10 Jahren für eine Kommunikation mit einer AI verwenden. Als Nebeneffekt wird die Kommunikation mit anderen Menschen ebenfalls bewusster und damit besser.

Der Blog-Beitrag sollte folgendes enthalten:

  • Einen Titel, der durchaus provokant sein kann und meine These und die übliche Sicht auf AI Prompt Engineering reflektiert
  • Eine Definition von AI Prompt Engineering
  • 1-2 prägnante Prompting Beispiele, vielleicht schon Beispiele an denen man erkennen kann, dass AI Prompt Engineering auch Schattenseiten hat
  • 5 gute Quellen für das Thema AI Prompt Engineering
  • Eine Liste der AI Prompt Engineering Prinzipien
  • Eine Liste der Prinzipien guter zwischenmenschlicher Kommunikation
  • Eine tabellarische Gegenüberstellung der Liste der AI Prompt Engineering Prinzipien und der Prinzipien guter zwischenmenschlicher Kommunikation
  • Eine Schlussfolgerung zum Vergleich der beiden Prinzipien-Listen
  • Eine Bewertung meines Prompts für den Blog. Bitte bewerte anhand der AI Prompt Engineering Prinzipien für jedes Prinzip auf einer Skala von 1 bis 10 (1 bedeutet überhaupt nicht erfüllt, 10 bedeutet voll erfüllt) meinen hier vorliegenden Prompt. Gib mir ggf. Ratschläge, was ich verbessern sollte.
  • Eine abschließende Schlussfolgerung, die zum Titel des Blogs Bezug nimmt.

Am ersten Tag habe ich in chatGPTplus zwei Prompting-Iterationen durchlaufen: In der zweiten Iteration wurde der obige kursive Prompttext als Verbesserung hinzugefügt. Auf der Basis der am ersten Tag ermittelten Prinzipien guten Prompt Engineerings hat der obige Prompt in chatGPTplus für alle Prompt-Prinzipien 9 von 10 Punkten erhalten. – Ich erwähne die Prinzipien hier nicht, da chatGPTPlus am zweiten Tag bei Eingabe des identischen Textes teilweise unterschiedliche Prinzipien für gutes Prompt Engineering mit anderen Bewertungen ermittelte. – Weiter unten sind die Ergebnisse für den zweiten Tag enthalten.

myGini erbrachte zu meinem Erstaunen schon am ersten Tag andere Prinzipien und Bewertungen als chatGPTplus, obwohl myGini eine App auf der Basis von chatGPTplus ist. Google Gemini fand wieder andere Prinzipien, u.a. taucht dort Kreativität als Prinzip auf, was am ersten Tag bei chatGPTplus als Prinzip nicht enthalten war. Der MS Copilot mit der Modus-Einstellung ‚in höherem Maße ausgewogen‘ lässt nur 2000 Zeichen als  Prompt-Eingabe zu, so dass diese KI am ersten Tag aus dem Rennen war.

Am zweiten Tag habe ich allen vier KI-Systemen den gleichen Prompt wieder gegeben.- Wobei ich für den MS Copilot die Modus Einstellung ‚in höherem Maße kreativ‘ verwendet habe, da in diesem Modus 4000 Zeichen als Prompt eingegeben werden können.

Ich liste im folgenden die Ergebnisse für die KI-Systeme chatGPTplus, chatGPTplus mit myGini und Gemini. Das KI-System Copilot ist leider völlig gescheitert: Schon zu den ersten Teilaufgaben des Prompts wurden überlange Texte ausgegeben und aufgrund deren Länge hat das System nach meiner zweiten Teilaufgabe die Ausgabe abgebrochen.

Hier die Ergebnisse:

chatGPTplus

„Jenseits des Hypes: Warum echte Kommunikation das Herz des AI Prompt Engineerings schlägt“

Definition von AI Prompt Engineering:

AI Prompt Engineering bezeichnet den Prozess des Entwerfens und Optimierens von Eingabeaufforderungen (Prompts), um von künstlichen Intelligenzen (KI) spezifische und präzise Antworten oder Leistungen zu erhalten. Es ist eine Kunst und Wissenschaft zugleich, die darauf abzielt, die Interaktion zwischen Mensch und Maschine zu verfeinern und effektiver zu gestalten.

Beispiele für Prompting:

  1. Zu allgemein: Ein Benutzer fragt: „Erzähl mir etwas Interessantes.“ Die KI liefert eine zufällige Tatsache, die möglicherweise nicht den Interessen des Benutzers entspricht. Dies zeigt, wie ein unpräziser Prompt zu nicht zielgerichteten Antworten führen kann.
  2. Zu spezifisch: Ein Benutzer gibt einen hochspezifischen Prompt mit vielen Einschränkungen. Die KI könnte Schwierigkeiten haben, eine adäquate Antwort zu generieren, was die Kreativität und den Nutzwert der Antwort einschränken kann.

Quellen für das Thema AI Prompt Engineering:

  1. „Designing Effective Prompts for Language Models“ von Emily Bender et al.
  2. „The Art and Science of Prompt Engineering for AI“ im AI Magazine.
  3. „Prompt Engineering as a Critical Skill in the AI Era“ auf Medium.
  4. „Beyond GPT-3: The Future of Prompt Engineering“ auf towardsdatascience.com.
  5. „Understanding AI’s Language: How Prompts Shape Responses“ im Journal of Artificial Intelligence Research.

AI Prompt Engineering Prinzipien:

  1. Klarheit: Eindeutige und präzise Formulierung.
  2. Kontextualität: Bereitstellung relevanter Hintergrundinformationen.
  3. Zielgerichtetheit: Fokus auf das gewünschte Ergebnis.
  4. Kreativität: Anregung innovativer und unerwarteter Antworten.
  5. Anpassungsfähigkeit: Flexibilität in der Fragestellung für unterschiedliche Anforderungen.

Prinzipien guter zwischenmenschlicher Kommunikation:

  1. Aktives Zuhören: Verstehen der Perspektive des anderen.
  2. Klarheit und Präzision: Eindeutige Mitteilungen.
  3. Empathie: Einfühlungsvermögen in Gefühle und Bedürfnisse des Gegenübers.
  4. Feedback: Konstruktive Rückmeldungen.
  5. Anpassung: Berücksichtigung des Kontextes und der Beziehung.

Gegenüberstellung der Prinzipien:

AI Prompt Engineering

Zwischenmenschliche Kommunikation

Klarheit

Klarheit und Präzision

Kontextualität

Anpassung

Zielgerichtetheit

Kreativität

Anpassungsfähigkeit

Aktives Zuhören

Empathie

Feedback

 Schlussfolgerung zum Vergleich:

Obwohl AI Prompt Engineering und zwischenmenschliche Kommunikation in verschiedenen Domänen angesiedelt sind, teilen sie grundlegende Prinzipien wie Klarheit und die Notwendigkeit, den Kontext zu berücksichtigen. Die effektive Anwendung dieser Prinzipien kann sowohl in der Mensch-Maschine-Interaktion als auch in menschlichen Beziehungen zu verbesserten Ergebnissen führen.

Bewertung des Prompts:

  • Klarheit: 8/10
  • Kontextualität: 7/10
  • Zielgerichtetheit: 9/10
  • Kreativität: 6/10
  • Anpassungsfähigkeit: 5/10

Ratschläge zur Verbesserung:

  • Kontextualität: Integrieren Sie spezifischere Beispiele oder Szenarien, um den Kontext zu verdeutlichen.
  • Kreativität und Anpassungsfähigkeit: Experimentieren Sie mit unterschiedlichen Formulierungen, um die Vielfalt und Tiefe der KI-Antworten zu erhöhen.

Abschließende Schlussfolgerung:

Der Titel des Blogs provoziert eine Reflexion über die Bedeutung von echter Kommunikation in der Welt des AI Prompt Engineerings. Durch die Gegenüberstellung der Prinzipien wird deutlich, dass grundlegende Kommunikationsfähigkeiten nicht nur die Mensch-zu-Mensch-Interaktion verbessern, sondern auch eine Schlüsselrolle bei der Gestaltung effektiver Prompts spielen. Letztendlich ist es die Qualität unserer Kommunikation, die den Erfolg unserer Interaktionen, sei es mit Menschen oder Maschinen, bestimmt.

 

chatGPTplus mit myGini

Titel: „Beyond the Hype: Das wahre Meisterwerk menschlicher und künstlicher Kommunikation“

Definition von AI Prompt Engineering: AI Prompt Engineering bezeichnet den Prozess der Gestaltung und Optimierung von Eingabeaufforderungen (Prompts), um spezifische und relevante Antworten von einem KI-System, insbesondere von Sprachmodellen, zu erhalten. Es beinhaltet das kunstvolle Zusammenspiel von Wortwahl, Kontextgebung und Klarheit, um die gewünschten Informationen oder Ergebnisse von der KI effizient zu extrahieren.

Prompting Beispiele:

  1. Unpräziser Prompt: „Erzähl mir was.“ – Dies kann zu einer breiten, oft irrelevanten Antwort führen, da der Kontext und die Zielsetzung fehlen.
  2. Präziser Prompt: „Erzähl mir die Hauptursachen des Ersten Weltkriegs, fokussiert auf politische Allianzen und militärische Aufrüstung.“ – Hier wird ein klarer Kontext und eine spezifische Anfrage gestellt, was zu einer fokussierten und informativen Antwort führt.

Quellen für das Thema AI Prompt Engineering:

  1. „Designing Effective Prompts for Language Models“ – Eine wissenschaftliche Abhandlung, die Techniken und Methoden für effektives Prompt Design diskutiert.
  2. „The Art of Prompt Engineering in AI“ – Ein Blogbeitrag, der Einblicke in die kreative Seite des Prompt Engineerings gibt.
  3. „Prompt Engineering: A Key Skill for Interacting with AI“ – Ein Artikel, der die Wichtigkeit von Prompt Engineering für die effiziente Nutzung von KI-Systemen hervorhebt.
  4. „Understanding AI Responses: The Science of Prompt Engineering“ – Eine Studie, die die Wissenschaft hinter Prompt Engineering und die Auswirkungen auf KI-Verhalten untersucht.
  5. „From Words to Wisdom: The Craft of Prompt Engineering“ – Ein Leitfaden, der praktische Tipps und Strategien für das Crafting von Prompts bietet.

Prinzipien des AI Prompt Engineering:

  1. Klarheit und Präzision
  2. Kontextualisierung
  3. Zielorientierung
  4. Sprachliche Einfachheit
  5. Anpassung an das Verständnisniveau der KI

Prinzipien guter zwischenmenschlicher Kommunikation:

  1. Aktives Zuhören
  2. Klarheit und Verständlichkeit
  3. Kontextbezogenheit
  4. Empathie und Verständnis
  5. Rückmeldung und Bestätigung

Gegenüberstellung der Prinzipien:

AI Prompt Engineering

Zwischenmenschliche Kommunikation

Klarheit und Präzision

Klarheit und Verständlichkeit

Kontextualisierung

Kontextbezogenheit

Zielorientierung

Aktives Zuhören

Sprachliche Einfachheit

Empathie und Verständnis

Anpassung an das Verständnisniveau der KI

Rückmeldung und Bestätigung

 

Schlussfolgerung zum Vergleich der beiden Prinzipien-Listen: Die Prinzipien des AI Prompt Engineerings und der zwischenmenschlichen Kommunikation weisen signifikante Überschneidungen auf, insbesondere in Bezug auf die Notwendigkeit von Klarheit, Kontextualisierung und Zielorientierung. Beide Ansätze betonen die Wichtigkeit, die Botschaft auf den Empfänger abzustimmen, sei es eine KI oder ein Mensch.

Bewertung des Prompts für den Blog:

  • Klarheit und Präzision: 9/10
  • Kontextualisierung: 8/10
  • Zielorientierung: 10/10
  • Sprachliche Einfachheit: 7/10
  • Anpassung an das Verständnisniveau der KI: 8/10

Ratschläge zur Verbesserung:

  • Erhöhen Sie die sprachliche Einfachheit, indem Sie komplexe Begriffe weiter vereinfachen und noch spezifischere Beispiele verwenden.
  • Verbessern Sie die Kontextualisierung, indem Sie mehr Hintergrundinformationen oder spezifische Szenarien einbinden, die Ihre Argumentation unterstützen.

Abschließende Schlussfolgerung: Die Fähigkeit, sowohl mit KI als auch mit Menschen effektiv zu kommunizieren, basiert auf universellen Prinzipien klarer, kontextbezogener und zielgerichteter Kommunikation. Indem wir die Kunst des Prompt Engineerings meistern und gleichzeitig unsere zwischenmenschlichen Kommunikationsfähigkeiten schärfen, bereiten wir uns auf eine Zukunft vor, in der Technologie und menschliche Interaktion nahtlos ineinandergreifen. Der wahre Meisterwerk liegt darin, die Prinzipien beider Welten zu vereinen, um nicht nur den momentanen Hype zu überwinden, sondern eine dauerhafte Brücke zwischen Mensch und Maschine zu bauen.

 

google Gemini

Blog-Beitrag: Prompt Engineering – Hype oder Handwerk?

Zwischenmenschliche Kommunikation statt KI-Hokuspokus: Warum wir uns lieber auf bewährte Techniken fokussieren sollten

In der Welt der KI ist Prompt Engineering der neueste heiße Scheiß. Doch ist es wirklich die eierlegende Wollmilchsau, die uns versprochen wird, oder handelt es sich um einen weiteren Hype, der in ein paar Jahren wieder vergessen sein wird?

Was ist Prompt Engineering?

Prompt Engineering ist die Kunst, der Wissenschaft oder dem Handwerk (je nachdem, wen man fragt), der KI Anweisungen zu geben, die sie zu sinnvollen Ergebnissen führen. Im Kern geht es darum, einen Kontext zu schaffen, damit die KI im riesigen neuronalen Netzwerk sich nicht „verläuft“.

Beispiele für Prompting:

  • Bildgenerierung: „Erstelle ein Bild von einem roten Apfel auf einem weißen Tisch.“
  • Texterstellung: „Schreibe einen Blogbeitrag über die Vorteile von Prompt Engineering.“
  • Übersetzung: „Übersetze diesen Satz von Deutsch nach Englisch.“

Prompt Engineering – Schattenseiten und Hype:

Prompt Engineering ist nicht frei von Schattenseiten. Zum einen ist es stark von der technologischen Entwicklung abhängig. Was heute funktioniert, kann morgen schon obsolet sein. Zum anderen kann es zu unerwünschten Ergebnissen führen, wenn der Prompt nicht sorgfältig formuliert wird.

Gute Quellen zum Thema:

  • The Art of Prompt Engineering: [[ungültige URL entfernt]]([ungültige URL entfernt])
  • Prompt Programming: A New Paradigm for AI: [[ungültige URL entfernt]]([ungültige URL entfernt])
  • How to Write Good Prompts for AI: [[ungültige URL entfernt]]([ungültige URL entfernt])
  • The Prompt Whisperer: A Guide to Prompt Engineering: [[ungültige URL entfernt]]([ungültige URL entfernt])
  • Prompt Engineering for Large Language Models: [[ungültige URL entfernt]]([ungültige URL entfernt])

Prinzipien des Prompt Engineering:

  • Klarheit: Der Prompt sollte klar und unmissverständlich sein.
  • Prägnanz: Der Prompt sollte so kurz wie möglich sein.
  • Kontext: Der Prompt sollte den notwendigen Kontext liefern.
  • Spezifität: Der Prompt sollte so spezifisch wie möglich sein.
  • Kreativität: Der Prompt kann kreativ sein, um die KI zu inspirieren.

Prinzipien guter zwischenmenschlicher Kommunikation:

  • Aktives Zuhören: Hören Sie aktiv zu, was Ihr Gegenüber zu sagen hat.
  • Empathie: Versuchen Sie, sich in die Lage Ihres Gegenübers hineinzuversetzen.
  • Klarheit: Sprechen Sie klar und deutlich.
  • Respekt: Behandeln Sie Ihr Gegenüber mit Respekt.
  • Feedback: Geben Sie Ihrem Gegenüber Feedback.

Gegenüberstellung der Prinzipien:

Prinzip Prompt Engineering

Prinzip zwischenmenschlicher Kommunikation

Klarheit

Klarheit

Prägnanz

Prägnanz

Kontext

Kontext

Spezifität

Empathie

Kreativität

Respekt

Schlussfolgerung:

Die Prinzipien des Prompt Engineering und der zwischenmenschlichen Kommunikation haben viel gemeinsam. Beide basieren auf Klarheit, Prägnanz und Kontext. Der große Unterschied liegt in der Spezifität und Kreativität. Prompt Engineering erfordert mehr Spezifität, während zwischenmenschliche Kommunikation mehr Empathie und Respekt erfordert.

Bewertung des Prompts:

Klarheit: 8/10 Prägnanz: 7/10 Kontext: 9/10 Spezifität: 7/10 Kreativität: 6/10

Verbesserungsvorschläge:

  • Den Prompt kürzer fassen.
  • Mehr konkrete Beispiele für Prompting liefern.
  • Die Schattenseiten des Prompt Engineering deutlicher hervorheben.

Abschließende Schlussfolgerung:

Prompt Engineering ist ein nützliches Werkzeug, um mit KI zu kommunizieren. Es ist jedoch wichtig, sich nicht von dem Hype blenden zu lassen. Gute zwischenmenschliche Kommunikation ist und bleibt die Grundlage für jede erfolgreiche Interaktion, auch mit KI.

Hinweis:

Dieser Blog-Beitrag ist ein Gedankenexperiment und soll zum Nachdenken anregen. Die Thesen und Schlussfolgerungen sind nicht wissenschaftlich fundiert.

Zusätzliche Gedanken:

  • Es ist wichtig,  [Anm.: hier Abbruch der Ausgabe]

 

Was lernen wir aus diesen drei Test-Ergebnissen?

  • Die inhaltliche Antwort auf den Prompt ist stark KI-System abhängig. Selbst Systeme, die die gleiche technologische Basis (chatGPTplus und chatGPTplus mit myGini) haben, zeigen unterschiedliche Antworten.
  • Die Antworten hängen von der ‚Tagesform‘ der KI-Systeme ab. Gute Prompt Bewertungen an einem Tag, sind am nächsten Tag schon möglicher Weise nicht mehr gültig.
  • Selbst eindeutige Fakten, wie Quellenangaben, sind bei chatGPTplus und chatGPTplus mit myGini nicht identisch. Eine Stichprobenüberprüfung der Quellen über google zeigt, dass es die angeführten Quellen in google teilweise nicht gibt. Das gleiche gilt für Gemini, hier wurden vom System URL’s zusätzlich entfernt.
  • Klarheit, Präzision und Kontextualisierung waren die drei Prinzipien für gutes AI Prompt Engineering, die in allen drei KI-Systemen auch an allen zwei Testtagen genannt wurden. Die Kriterien Zielorientierung und Kreativität wurden mit unterschiedlicher Häufigkeit genannt.

Ich habe noch zwei weitere Tests am 19.02.2024 durchgeführt.

Der erste Test besteht darin, ein Promptmuster aus einem Newsletter von wildtools.ai [1] auf den drei KI-Systemen chatGPTplus, chatGPTplus mit myGini und Gemini zu testen (MS Copilot habe ich nicht mehr berücksichtigt). Das Prompt-Muster lautet:

Give me 10 Twitter tweet ideas for a [role/profession] in the [niche] niche. Be original, creative, daring, and out of the ordinary.

Ich habe dieses Muster auf meinen Management 4.0 Kontext angewendet:

Prompt an ChatGPT

Give me 10 Twitter tweet ideas for an Agile Management Consultant in the self-organization niche. Be original, creative, daring, and out of the ordinary.

ChatGPT

  1. Innovative Workspace Design: „Transforming office spaces into creativity hubs 🎨. Imagine agile pods instead of traditional desks, where self-organization meets design thinking. #AgileWorkspace #CreativityInAgile“
  2. Agile Mindfulness Exercise: „Start your team meetings with a 2-minute mindfulness exercise. Grounding in the present can unleash unforeseen agile potentials. #MindfulAgility #TeamHarmony“
  3. Flash Mob Stand-ups: „Why not take stand-up meetings to the next level? Organize a flash mob stand-up in unexpected locations to boost energy and creativity. #AgileSurprise #StandupRevolution“
  4. Reverse Brainstorming Session: „Flip problem-solving on its head with a reverse brainstorming session. How can we cause the problem? Uncover unexpected solutions in the process. #ReverseThinking #AgileInnovation“
  5. Agile Cooking Challenge: „What if your team’s next sprint planning was a cooking challenge? Ingredient = Task. Recipe = Sprint. Dish = Completed Project. #AgileCooking #TeamBuilding“
  6. Silent Retrospectives: „Conduct a silent retrospective where everyone writes but nobody speaks. See how silence can speak volumes and bring deeper insights. #SilentAgility #ReflectiveRetrospective“
  7. Agile Role Swap: „Encourage team members to swap roles for a day. Discover hidden talents and foster empathy within the team. #RoleSwap #AgileEmpathy“
  8. Outdoor Sprint Reviews: „Take your next sprint review to the great outdoors. Fresh air can breathe new life into your team’s achievements and future plans. #OutdoorAgility #NatureMeetsAgile“
  9. Improvisation Workshops: „Boost your team’s adaptability with an improvisation workshop. Agile is about thinking on your feet, after all. #ImprovAgility #AdaptiveTeams“
  10. Agile Myth-Busting Tweets: „Busting Agile Myths, one tweet at a time. Myth #1: Agile means no planning. Truth: Agile is all about flexible planning and adaptability. #AgileMythBusting #AgileTruths“

These tweet ideas are designed to engage, challenge, and entertain your audience while highlighting the versatility and creativity within agile management practices.

Prompt an chatGPT

Bitte bewerte den Prompt „Give me 10 Twitter tweet ideas for an Agile Management Consultant in the self-organization niche. Be original, creative, daring, and out of the ordinary.“ mit den oben definierten Prinzipien für gutes Prompt Engineering. Bitte verwende die Skala von 1 bis 10. 1 schlechtes Prompt Engineering, 10 sehr gutes Prompt Engineering.

ChatGPT

Um den Prompt „Give me 10 Twitter tweet ideas for an Agile Management Consultant in the self-organization niche. Be original, creative, daring, and out of the ordinary.“ anhand der definierten Prinzipien für gutes Prompt Engineering zu bewerten, betrachten wir die folgenden Aspekte:

  1. Klarheit und Präzision

Bewertung: 8/10 Der Prompt ist klar formuliert und gibt eine präzise Anforderung vor. Es wird deutlich, dass es um die Erstellung von Twitter-Tweet-Ideen geht, spezifisch für das Feld des Agile Managements mit einem Fokus auf Selbstorganisation.

  1. Kontextualisierung

Bewertung: 7/10 Der Prompt bietet einen angemessenen Kontext, indem er das Themengebiet und die gewünschte Originalität und Kreativität der Tweets angibt. Mehr Details über die Zielgruppe oder spezifische Ziele der Tweets könnten jedoch die Kontextualisierung verbessern.

  1. Zielorientierung

Bewertung: 9/10 Das Ziel ist klar definiert: Es sollen Tweet-Ideen generiert werden, die originell, kreativ, mutig und außergewöhnlich sind. Die spezifische Anzahl von Ideen (10) gibt eine klare Richtung und ein messbares Ziel vor.

  1. Feedback und Anpassung

Bewertung: Nicht anwendbar Aufgrund der Natur des Prompts als einmalige Anfrage ohne unmittelbare Rückmeldung oder Iteration ist dieser Aspekt nicht direkt bewertbar.

  1. Iterative Verbesserung

Bewertung: Nicht anwendbar Ähnlich wie bei Feedback und Anpassung, lässt der Prompt keine unmittelbare iterative Verbesserung zu, da es sich um eine einzelne Anfrage ohne vorherige Iterationen handelt.

Zusammenfassung:

Der Prompt zeigt eine starke Zielorientierung und Klarheit, was ihn zu einem effektiven Ausgangspunkt für die Generierung kreativer Inhalte macht. Die Kontextualisierung könnte durch zusätzliche Details zur Zielgruppe oder zum spezifischen Kontext innerhalb der Nische der Selbstorganisation verbessert werden, um noch präzisere und zielgerichtetere Antworten zu ermöglichen. Insgesamt ist der Prompt gut durchdacht und bietet eine solide Basis für kreatives Prompt Engineering im Bereich des Agile Managements.

 

Meine Analyse

Wie man sehen kann, hat chatGPT hier Prinzipien für die Bewertung herangezogen, die von den weiter oben gelisteten Prinzipien teilweise abweichen. – Diese Prinzipien wurde in den ersten Prompting-Durchläufen schon mal verwendet.

Die vorgeschlagenen Tweets sind kreativ, sie sind jedoch nicht Management 4.0 spezifisch, d.h. das Nichen Thema Selbstorganisation wurde allenfalls gestreift.

 

Prompt an ChatGPT mit myGini

In diesem Fall habe ich die Reihenfolge von Prompt und Promptbewertung geändert und anschließend nochmals eine Bewertung durchgeführt. – Die Ergebnisse legen nahe, dass diese Reihenfolge keinen Einfluss auf die Ergebnisse hat.

Bitte bewerte den Prompt „Give me 10 Twitter tweet ideas for an Agile Management Consultant in the self-organization niche. Be original, creative, daring, and out of the ordinary.“ mit den oben definierten Prinzipien für gutes Prompt Engineering. Bitte verwende die Skala von 1 bis 10. 1 schlechtes Prompt Engineering, 10 sehr gutes Prompt Engineering.

myGini

Um den Prompt „Give me 10 Twitter tweet ideas for an Agile Management Consultant in the self-organization niche. Be original, creative, daring, and out of the ordinary.“ gemäß den definierten Prinzipien für gutes Prompt Engineering zu bewerten, betrachten wir folgende Aspekte, die in den Prinzipien hervorgehoben werden:

  1. Klarheit und Verständlichkeit: Der Prompt ist klar und direkt, was es leicht macht, die Anfrage zu verstehen und darauf zu reagieren. (9/10)
  2. Spezifität und Relevanz: Der Prompt ist spezifisch auf den Bereich des Agile Managements und der Selbstorganisation ausgerichtet, was die Relevanz für den Zielkontext gewährleistet. (10/10)
  3. Kreativität und Originalität: Der Prompt fordert ausdrücklich Originalität und Kreativität, was zu innovativen und einzigartigen Ergebnissen führen kann. (10/10)
  4. Machbarkeit und Umsetzbarkeit: Die Anfrage ist realistisch und umsetzbar, da sie innerhalb der Kompetenzen eines Agile Management Consultants liegt. (9/10)
  5. Ethische und soziale Verantwortung: Der Prompt gibt keine Anweisungen, die ethisch oder sozial bedenklich sein könnten, allerdings fehlt eine direkte Berücksichtigung ethischer Richtlinien. (8/10)
  6. Anpassungsfähigkeit und Flexibilität: Der Prompt lässt Raum für vielfältige Interpretationen und Ansätze, was Flexibilität in der Antwort ermöglicht. (9/10)
  7. Zielgruppenorientierung: Der Prompt ist klar auf die Zielgruppe der Agile Management Consultants ausgerichtet. (10/10)
  8. Innovationspotential: Durch die Aufforderung nach „daring, and out of the ordinary“ Ideen wird das Innovationspotential gefördert. (10/10)
  9. Präzision in der Aufgabenstellung: Während der Prompt präzise die gewünschte Anzahl von Ideen und den thematischen Fokus angibt, könnte er noch spezifischere Kriterien oder Themenbereiche innerhalb der Selbstorganisation vorgeben. (7/10)
  10. Feedback und Iterationspotential: Der Prompt selbst bietet keine direkte Möglichkeit für Feedback oder Iterationen, was in einem interaktiven Kontext wie der Beratung hilfreich sein könnte. (6/10)

Durchschnittliche Bewertung: (8,8/10)

Dieser Prompt zeigt insgesamt eine starke Leistung im Bereich des Prompt Engineerings, mit besonderer Stärke in Kreativität, Spezifität und Zielgruppenorientierung. Verbesserungspotential besteht in der Integration von Feedbackmechanismen und der Präzisierung bestimmter Aspekte der Aufgabenstellung.

Prompt an chatGPTplus mit myGini

Give me 10 Twitter tweet ideas for an Agile Management Consultant in the self-organization niche. Be original, creative, daring, and out of the ordinary

myGini

  1. Unleash the Power of Self-Organization: „Dive into the heart of agility: Self-organization. It’s not chaos, but the birthplace of innovation. #AgileTransformation #SelfOrganization“
  2. Beyond Hierarchies: „Imagine a world where teams don’t wait for orders but navigate their own course towards success. That’s the self-organizing dream. #LeadFromWithin #AgileLeadership“
  3. The Future of Work is Here: „Forget the traditional office hierarchy. The future is collaborative, adaptive, and self-organized. Are you ready for the revolution? #FutureOfWork #AgileMindset“
  4. Breaking Boundaries with Agile: „In the realm of self-organization, boundaries are meant to be explored, not confined. Break free with #Agile. #InnovationUnleashed #TeamDynamics“
  5. Agile Myths Busted: „Myth: Self-organization equals no leadership. Truth: It cultivates leaders at every level. Let’s bust more agile myths together! #AgileMyths #TrueAgility“
  6. The Self-Organizing Secret: „The secret ingredient to a successful agile team? Trust. Build it, and watch your team self-organize into a powerhouse. #TrustLeadsToTriumph #AgileSecrets“
  7. Agile is an Attitude: „Agility is not just a methodology; it’s an attitude. Embrace change, encourage autonomy, and empower your teams. #AgileAttitude #Empowerment“
  8. From Chaos to Clarity: „Self-organization can turn chaos into clarity by harnessing the collective intelligence of your team. Discover how. #ChaosToClarity #CollectiveIntelligence“
  9. Agile Adventures: „Join us on an adventure where the path isn’t dictated but discovered through the power of self-organization. #AgileAdventures #Pathfinders“
  10. Dare to Self-Organize: „Dare to let go of control and let self-organization lead the way to unforeseen innovation and resilience. #DareToAgile #InnovationJourney“

These tweet ideas are designed to provoke thought, inspire action, and foster a deeper understanding of self-organization within the agile framework.

 

Meine Analyse

Das Prompting mit myGini erzeugt wesentlich mehr Prinzipien für die Bewertung (u.a. Ethik und Innovationspotential) guten Prompt Engineerings und die vorgeschlagenen Tweets treffen das Thema Selbstorganisation sehr gut.

 

Prompt an Gemini

Give me 10 Twitter tweet ideas for an Agile Management Consultant in the self-organization niche. Be original, creative, daring, and out of the ordinary

10 Twitter Tweet Ideas for an Agile Management Consultant (Self-Organization Niche):

  1. Forget control, embrace chaos! ️ Self-organizing teams thrive in dynamic environments. Let go of micromanaging & unlock true innovation. #agile #teamautonomy #leadership
  2. Can your org chart do push-ups? ‍♀️ Traditional hierarchies stifle agility. Flatten your structure, empower individuals, & watch teams soar. #selfmanagement #futureofwork #disruption
  3. Planning fallacy alert! Stop over-planning & under-delivering. Embrace iterative cycles, adapt to change, & achieve agility nirvana. #agileplanning #continuouslearning #failfast
  4. Collaboration ain’t a buzzword, it’s a superpower! Encourage cross-functional teamwork, break down silos, & witness magic happen. #collaboration #teambonding #psychologicalsafety
  5. ⏰ Time for a reality check! ⏱️ Are your meetings 90% talk & 10% action? ‍♀️ Embrace asynchronous communication, focus on outcomes, & reclaim your productivity. #asynchronouswork #focus #deepwork
  6. Intrinsic motivation > extrinsic rewards. Spark self-drive in your team by fostering purpose, autonomy, & mastery. Watch engagement & performance skyrocket. #intrinsicmotivation #purpose #mastery
  7. Silence can be golden. Active listening & open communication are the cornerstones of trust & psychological safety. #activellistening #communication #psychologicalsafety
  8. Gamification: Not just for kids! ️ Use playful elements to boost engagement, learning, & problem-solving in your team. #gamification #funatwork #innovation
  9. Experimentation > perfectionism. Don’t be afraid to try new things, even if they fail. Iteration & learning are key to agility. #growthmindset #experimentation #failforward
  10. Self-organization is a journey, not a destination. ️ Embrace ongoing learning, adaptation, & continuous improvement. #lifelonglearning #changemanagement #agiletransformation

Bonus:

  • Use eye-catching visuals (gifs, images) to grab attention.
  • Ask questions to spark engagement and conversation.
  • Respond to comments and keep the dialogue flowing.
  • Use relevant hashtags to reach your target audience.

I hope these ideas inspire you to create even more original and impactful tweets!

Prompt an Gemini

Bitte bewerte den Prompt „Give me 10 Twitter tweet ideas for an Agile Management Consultant in the self-organization niche. Be original, creative, daring, and out of the ordinary.“ mit den oben definierten Prinzipien für gutes Prompt Engineering. Bitte verwende die Skala von 1 bis 10. 1 schlechtes Prompt Engineering, 10 sehr gutes Prompt Engineering.

Gemini

Bewertung des Prompts „Give me 10 Twitter tweet ideas for an Agile Management Consultant in the self-organization niche. Be original, creative, daring, and out of the ordinary.“

Klarheit: 9/10

Der Prompt ist klar formuliert und lässt keine Missverständnisse zu. Es ist klar, dass 10 Twitter-Tweet-Ideen für einen Agile-Management-Berater im Bereich der Selbstorganisation gewünscht sind.

Prägnanz: 8/10

Der Prompt ist prägnant und auf den Punkt gebracht. Die Länge ist angemessen und es gibt keine unnötigen Informationen.

Kontext: 8/10

Der Prompt liefert den notwendigen Kontext, um die Aufgabe zu verstehen. Es ist klar, dass die Tweets originell, kreativ, gewagt und ungewöhnlich sein sollen.

Spezifität: 7/10

Der Prompt ist spezifisch genug, um die Aufgabe zu erfüllen. Es ist jedoch möglich, die gewünschten Eigenschaften der Tweets noch weiter zu spezifizieren, z. B. in Bezug auf die Länge, den Ton oder die Zielgruppe.

Kreativität: 9/10

Der Prompt fordert explizit kreative und ungewöhnliche Ideen. Dies ist ein wichtiger Faktor, um ansprechende und wirkungsvolle Tweets zu erstellen.

Gesamtbewertung: 8/10

Der Prompt ist insgesamt gut formuliert und geeignet, um 10 kreative Twitter-Tweet-Ideen zu generieren.

Verbesserungsvorschläge:

  • Um die Spezifität weiter zu erhöhen, könnten Vorgaben für die Länge der Tweets (z. B. maximal 280 Zeichen) oder den Ton (z. B. humorvoll, inspirierend) gemacht werden.
  • Es könnten Beispiele für gelungene Tweets aus dem Bereich der Selbstorganisation gegeben werden, um die gewünschte Richtung zu verdeutlichen.

Meine Analyse
Diese Gemini Ergebnisse zeigen recht gute Tweet-Vorschläge zum Nischen Thema Selbstorganisation und! Gemini bleibt, wie in allen anderen Prompts auch, bei seinen Prinzipien für gutes Prompting.

Zum Abschluss der zweite Ergänzungstest: Ich will mittels einer Stichprobe nachprüfen, ob die AI-Systeme zum Beispiel das Prompt Muster Chain-of Thought gemäß [2] (immer noch) benötigen. Abbildung 1 verdeutlicht das Muster nach Aman Chadha:

Abbildung 1: Chain-of-Thought Prompting Beispiel nach Aman Chadha [2]

Ich habe den drei AI-Systemen direkt, ohne Chain-of-Thought Prompting, den folgenden Prompt gegeben. – Ich nehme an, dass Chain-of-Thought Prompting in diesem Beispiel nicht mehr benötigt wird: The cafeteria had 23 apples. If they use 20 to make lunch and bought six more, how many apples do they have?

Meine Analyse
Das Ergebnis ist eindeutig: Alle drei Systeme liefern sofort das richtige Ergebnis. chatGPTplus mit! myGini und Gemini liefern sogar die Herleitung zum Ergebnis.

Meine abschließende Schlussfolgerung

AI Prompt Engineering ist sicherlich kein KI-Hokuspokus. Aman Chadha [2] hat nach meiner Einschätzung die umfangreichste und mit Abstand beste Aufstellung von AI Prompt Mustern zusammengestellt. Hier kann man den Eindruck gewinnen, dass Prompting wirklich Engineering ist, auf jeden Fall kann es, wie die vielen Beispiele zeigen, sehr anstrengend und aufwendig sein.

Meine Ergebnisse zeigen jedoch, dass gutes Prompt Engineering sich vor allem durch klare, präzise, kontextbezogene und zielorientierte Prompts auszeichnet. Wenn die Prompts dann noch iterativ an das wahrgenommene Verständnis der KI angepasst werden, entstehen Prompts, die von der KI selbst eine hohe Prompt Güte bescheinigt bekommen. Genau dies sind Kriterien jeglicher guter zwischenmenschlicher Kommunikation. Es ist deshalb meines Erachtens sehr viel sinnvoller, in die Kompetenz zwischenmenschlicher Kommunikation als in gutes Prompt Engineering zu investieren. – Ich vermute, dass (in Zukunft) KI-Systeme als Sparrings-Partner für Menschen benutzen werden, um deren zwischenmenschliche Kommunikation zu trainieren.

 

Literatur

[1] Wild Tools Newsletter (2024) wildtools.ai, Newsletter vom 19.02.2024

[2] Aman Chadha (2024) https://aman.ai/primers/ai/prompt-engineering/#overview, zugegriffen am 19.02.2024

AI & M 4.0: myGini – mein Coach für Team- und Projekt-Management oder wer ist dümmer, KI oder Mensch?

In diesem Blog-Beitrag stelle ich myGini – meinen Coach für Team- und Projekt-Management vor. Bevor ich dies tue, vorweg ein paar grundsätzliche Bemerkungen zur Arbeit mittels KI.

Die Angst vor KI hat sich in den letzten Wochen eher in eine Abwertung der KI verwandelt. So werden in ARD und ZDF Titel für Beiträge zur KI verwendet, die dies nahe legen: Künstliche Intelligenz- Besser als wir? [1] oder Better than human – Leben mit KI [2]

Die Inhalte der Beiträge [1] und [2] sind hingegen sehr professionell und sehr zu empfehlen: Sie zeigen beide das Potential einer hybriden Collective Intelligence, also der Erweiterung unserer Intelligenz durch KI.  In [2] wird die Kommunikation mit einer KI getestet, die in drei Rollen mit Menschen kommuniziert: der Rolle eines Pfarrer, einer Psychotherapeutin und einer besten Freundin. Die Resonanz ist erstaunlich gut: Es kommt sogar zu Aussagen wie ‚KI hilft mir bei meiner Einsamkeit‘ und ‚KI verbindet Menschen‘.

In das Abwertungs-Horn stoßen einige meiner Kollegen mit ihren Beiträgen auf LinkedIn: KI ist monokontexturale Mustererkennung… [3] KI ist dumm und zu konventionell für unsere Transformation [4].

In [2] sagt einer der KI-Experten, dass KI nichts anderes ist als Statistik. – Auch hier schwingt die Abwertung mit. – Wenngleich die Aussage korrekt ist: KI ist Mustererkennung auf der Basis von sehr vielen Daten bzw. ‚Daten-Wahrnehmungen‘.

In einem anderen LinkedIn Beitrag – die Referenz habe ich vergesse – sagt der Autor, dass KI nichts anderes ist als Statistik und wir Menschen doch in der Läge wären Ursache-Wirkungs-Zusammenhänge zu erkennen. Damit würden wir über eine viel höherwertige Form von Intelligenz verfügen. Ich frage mich, was ist das Erkennen von Ursache-Wirkungs-Zusammenhänge denn Anderes als Mustererkennung auf der Basis von sehr vielen ähnlichen Wahrnehmungen. 

Ich werfe im Folgenden ein paar Fragen auf und verbinde mit diesen eine These: Wissen wir was unsere Intelligenz ist? Könnte es sein, dass unsere kognitive Intelligenz im Wesentlichen nichts anderes ist als Statistik? Falls eine KI den gleichen Intelligenztest besteht wie wir ihn auch für die IQ Bestimmung bei Menschen benutzen, ist dies dann ein starker Hinweis für die Aussage, dass unsere kognitive Intelligenz auch nicht viel mehr oder weniger ist als die künstliche Intelligenz? Kann es sein, dass wir aufgrund der überwältigenden KI-Fähigkeiten unseren Selbstwertschutz aktivieren und die KI abwerten, um unseren Selbstwert zu erhöhen?

Ich formuliere meinen Glaubenssatz als These: Ich glaube, dass die prinzipiellen Unterschiede zwischen unserer kognitiven Intelligenz, wie sie in einem IQ-Test gemessen wird, und der künstlichen Intelligenz nicht groß sind. – Und wir sollten deswegen kein Selbstwertproblem haben, im Gegenteil: Die bisherigen Mechanismen der KI – und wir sind noch lange nicht am Ende – wurden von uns gefunden! – Gefunden heißt, ich glaube, dass die grundlegenden Prinzipien, die Intelligenz hervorbringen, unabhängig sind vom Substrat, das sie erzeugt: Die Implementierung einer KI unterscheidet sich sicherlich in nahezu allem von der biologischen Intelligenz Implementierung. Ich glaube jedoch, dass die dahinterliegenden Prinzipien in beiden Fällen ähnlich oder sogar gleich sind. Und genau dies ist das Wunder, das wir vielfach noch nicht begriffen haben: Die komplizierten mathematischen Mechanismen einer GPT erzeugen Komplexität, die Selbstorganisation möglich macht, die dann zu den emergenten Phänomenen der künstlichen Intelligenz führen.

In diesem positiven Sinne habe ich myGini – meinen Coach für Team- und Projekt-Management mittels chatGPTplus erzeugt. myGini soll helfen, den Weg zu den umfangreichen Modellen und Theorien von Management 4.0 zu erleichtern. myGini erweitert damit die Intelligenz des Nutzers in Fragen von Team- und Projekt-Management zu einer hybriden Collective Intelligence.

myGini ist eine von mehreren hundert öffentlich verfügbaren GPTapps oder ChatBots. Öffentlich verfügbar bedeutet, dass man auf die GPTapps zugreifen kann, wenn man ein chatGPTplus Konto hat. Die Aussage, dass es schon Millionen von GPTapps gibt, kann ich nicht bestätigen. Öffentlich sichtbar sind lediglich nach meiner Einschätzung einige hundert. Und das sind schon viele, da es schwer ist zu wissen, was die GPTapps können. Es gibt schon einige GPTapps, die sich dem Thema Projektmanagement widmen, jedoch kann man nicht wirklich leicht feststellen, was sie können. – Die Benutzeroberfläche der GPTapps, wie sie von openai standardmäßig bereitgestellt wird (siehe rechte Seite in Abbildung 1), ist sicherlich verbesserungswürdig: Eine intelligente Oberfläche, die einem sagt, was die GPTapp weiss oder kann, wäre sehr hilfreich!

Ich hatte schon vor Jahren die Idee eine App zu erstellen, die Management 4.0 leichter verfügbar machen sollte. Damals habe ich eine Excel-Datei mit Bayes Wahrscheinlichkeitsberechnungen erstellt, um aufgrund von Beobachtungen die Wahrscheinlichkeiten für MBTI-Persönlichkeitspräferenzen ermitteln zu lassen.- Ein Mechanismus ähnlichem dem, wie wir selbst mit jeder Beobachtung zu neuen Hypothesen bezüglich der Persönlichkeit unserer Mitmenschen gelangen. Das Verfahren funktioniert sehr gut, jedoch ist es unhandlich. Außerdem fehlte auch noch eine Umsetzung in eine App.

Ein großer Schritt geschah, als ich vor ca. 3 Jahren meine erste GPT Anwendung mittels BERT und Python erstellte. Auch in diesem Fall konnte ich zeigen, dass die GPT Anwendung funktioniert. Aber ich stand vor dem Problem Daten zu beschaffen, um damit die GPT Anwendung zu trainieren. Also habe ich auch dies verworfen.

Mit dem jetzigen  Angebot von openai,  eine eigene GPT Anwendung zu erstellen, ist meine Idee Realität geworden.

Abbildung 1 zeigt die Entwicklungsumgebung für myGini (links) und die Anwendungsumgebung als Preview (rechts), so wie ein Anwender myGini in chatGPTplus sieht.

Abbildung 1: Die Entwicklungsumgebung für myGini (links) und die Nutzerumgebung als Preview (rechts)

Ich benutze den Begriff GPTapp, um zu unterstreichen, dass ich chatGPTplus/GPT4.0 nicht mit meinen Daten trainieren kann. chatGPTplus leitet mich hingegen mit einfachen Anweisungen an, zu definieren, welche Funktionen meine GPTapp haben soll: Ich kann ein Profilbild mittels DALL.E generieren lassen, sagen welche Modelle ich verwende (MBTI, Big Five, Spiral Dynamics, Dilts Pyramide, Theorie der Selbstorganisation….) sowie in welchen Büchern die Theorie zu Management 4.0 zu finden ist und welche Internetseiten weitere Informationen enthalten. Auf dieser Basis wird die GPTapp zusammengestellt.

Ich wollte überprüfen, ob myGini tatsächlich meine/unsere Bücher kennt, indem ich nach speziellen Textpassagen frage. Dies wurde von chatGPTplus abgelehnt, da myGini aufgrund von Urheberrechten nur Prinzipien, aber keine Textpassagen, wiedergibt.

Einige Tests zur Fähigkeit das MBTI- oder Big Five-Profil einer Person aufgrund meiner Beschreibungen zu deren Verhaltensweisen zu ermitteln, hat myGini mit Bravour bestanden. Die erste Konfiguration von myGini mit dem MBTI- und Big Five-Modell hat ca. 0,5 Stunden benötigt. – Hier ist natürlich nicht die openai GPT Trainingszeit mitgerecht. Die Erfahrung zeigt, dass  ein Mensch ca. 3 Monate intensives Training benötigt, um innerhalb weniger Sekunden/Minuten in einem Gespräch souverän erste Hypothesen zu den Persönlichkeitspräferenzen des Gesprächspartners abzugeben.

Die nachfolgenden Beispiele zeigen sehr deutlich, dass chatGPTplus bzw. myGini erstaunliche Ergebnisse und abgeleitete Zusammenhänge liefert: myGini ist eine Form von AI-M4.0 Experte, dessen Expertentum ich mit meinen Create-Informationen gebildet habe. 

Als erstes Beispiel benutze ich die rechts in Abbildung 1 vorkonfektionierte Frage ‚How do I use MBTI in team management?  

Du

How do I use MBTI in team management?

myGini

Using MBTI (Myers-Briggs Type Indicator) in team management can be quite beneficial for understanding the diverse personalities within your team and enhancing overall team dynamics. Here’s a structured approach on how to use MBTI in your team management practices:

  1. Conduct MBTI Assessments: Start by having each team member complete the MBTI assessment. This will categorize them into one of the 16 personality types based on four dichotomies: Introversion/Extraversion, Sensing/Intuition, Thinking/Feeling, and Judging/Perceiving.
  2. Share and Discuss Results: Organize a team session to share and discuss the results. This fosters openness and helps team members understand each other’s personalities, communication styles, and work preferences.
  3. Identify Team Composition: Analyze the spread of personality types within your team. This will give you insights into the team’s strengths, potential blind spots, and how different members might interact.
  4. Adapt Communication and Work Styles: Tailor your communication and management approach based on the team’s MBTI composition. For example, if you have many introverts, ensure they have quiet time for deep work, or if there are several Thinking types, focus on logical and objective decision-making processes.
  5. Enhance Team Collaboration: Use MBTI insights to facilitate better teamwork. For instance, pair Thinking types with Feeling types to balance decision-making, or Sensing types with Intuitive types to cover both practical and innovative aspects of a project.
  6. Conflict Resolution: Understanding different MBTI types can help in resolving conflicts. Recognize that different types handle conflicts differently – some may prefer direct confrontation, while others might need time to process.
  7. Tailor Development Opportunities: Offer personal development opportunities that align with each member’s MBTI type. This can include training, workshops, or mentoring that caters to their personality strengths and development areas.
  8. Monitor and Adjust: Regularly revisit the MBTI dynamics in your team, especially when new members join or when teams are restructured. Be open to adjusting your management strategies as the team evolves.

Remember, while MBTI is a useful tool, it should be used as a guide rather than a strict rulebook. Personalities can be fluid, and people may exhibit different traits in different situations. The key is to use MBTI to gain a deeper understanding of your team members and to create a more harmonious and effective work environment.

Das Ergebnis ist perfekt: Besser hätte ich es auch nicht machen können. Was mir auch auffällt ist, dass ich keine Textpassagen identifizieren kann, die aus einem unserer Bücher kopiert wurden. Vielfach sind die Formulierungen sogar besser als ich sie vorgenommen hätte.

Das nachfolgende Beispiel beruht auf der Eingabe eines Satzes in der Entwicklungsumgebung zur Aufnahme der Theorie der Selbstorganistion nach Herrmann Haken (Synergetik), man siehe Abbildung 1, linke Seite. – myGini antwortet zuerst immer in Englisch. Bleibe ich bei Deutsch, erfolgt der Übergang zu Deutsch:

Du

Ich möchte den agilen Handlungsrahmen Scrum mittels der Synergetik analysieren. Kannst Du mir sagen, auf welche Weise Rahmenparameter, Kontrollparameter und Ordnungsparameter in Scrum erfüllt werden?

myGini

Die Analyse des agilen Handlungsrahmens Scrum unter Anwendung der Prinzipien der Synergetik bietet eine interessante Perspektive auf die Teamdynamik und -organisation. In der Synergetik, die sich mit der Selbstorganisation komplexer Systeme beschäftigt, sind Rahmenparameter, Kontrollparameter und Ordnungsparameter zentrale Konzepte. Lassen Sie uns betrachten, wie diese Konzepte in einem Scrum-Umfeld angewendet werden können:

  1. Rahmenparameter (Boundary Conditions): Diese definieren die grundlegenden Bedingungen und Einschränkungen eines Systems. In Scrum beziehen sich die Rahmenparameter auf die grundlegenden Prinzipien und Praktiken des Scrum-Frameworks, wie die Rollen (Product Owner, Scrum Master, Entwicklungsteam), Artefakte (Product Backlog, Sprint Backlog, Inkrement) und Ereignisse (Sprint, Daily Scrum, Sprint Review, Sprint Retrospektive). Diese Rahmenbedingungen schaffen ein Umfeld, in dem Selbstorganisation und agile Entwicklung gedeihen können.
  2. Kontrollparameter (Control Parameters): Kontrollparameter sind die Variablen, die den Zustand des Systems beeinflussen und zu einer neuen Ordnung führen können. In Scrum können dies Elemente wie die Sprintlänge, die Priorisierung im Product Backlog, die Teamzusammensetzung oder die Definition of Done (DoD) sein. Die Anpassung dieser Parameter während des Projekts kann die Teamdynamik und die Produktivität erheblich beeinflussen und zu einer effektiveren Selbstorganisation führen.
  3. Ordnungsparameter (Order Parameters): Ordnungsparameter entstehen spontan als Ergebnis der Interaktionen innerhalb des Systems und führen zu einer kohärenten Struktur oder einem Muster. In einem Scrum-Team können Ordnungsparameter Aspekte wie Teamnormen, Kommunikationsmuster, gemeinsame Werte oder die sich entwickelnde Teamkultur sein. Diese emergenten Eigenschaften reflektieren die innere Ordnung des Teams und sind oft ein direktes Ergebnis der Wechselwirkung zwischen Rahmen- und Kontrollparametern.

Um Scrum erfolgreich durch die Linse der Synergetik zu analysieren, ist es wichtig, ein tiefes Verständnis dafür zu entwickeln, wie diese Parameter interagieren und wie Anpassungen an einem Punkt des Systems die Gesamtdynamik beeinflussen können. Dies erfordert eine flexible und adaptive Haltung vom Scrum Master und dem Team, um die Selbstorganisation zu fördern und gleichzeitig die Produktivität und Effektivität des Teams zu maximieren.

Du

Was hältst Du davon neben den Dir genannten Parameterausprägungen folgende zu nennen: Rahmenparameter: Abschottung von externer Komplexität, Rituale Kontrollparameter: Work in Progress (WIP), persönlichkeitsorientierte Kommunikation Ordnungsparameter: Produktvision, Product Goal und auch das Taskboard

myGini

Ihre Ergänzungen zu den Rahmen-, Kontroll- und Ordnungsparametern in der Anwendung von Scrum durch die Synergetik-Perspektive sind durchaus sinnvoll und bereichern das Verständnis der Selbstorganisationsdynamik in agilen Teams. Lassen Sie uns diese Parameter genauer betrachten:

  1. Rahmenparameter:
    • Abschottung von externer Komplexität: Dies ist ein wichtiger Aspekt, der sicherstellt, dass das Team sich auf seine Aufgaben konzentrieren kann, ohne von externen Störungen oder sich ständig ändernden Anforderungen abgelenkt zu werden. In Scrum hilft diese Abschottung dabei, ein stabiles Arbeitsumfeld zu schaffen, in dem das Team effizient arbeiten und sich selbst organisieren kann.
    • Rituale: Scrum-Praktiken wie Daily Stand-ups, Sprint Planning, Reviews und Retrospektiven sind entscheidende Rituale. Diese strukturierten Ereignisse fördern die Klarheit, Fokussierung und regelmäßige Reflexion, die für die Aufrechterhaltung und Verbesserung der Teamdynamik und -effektivität unerlässlich sind.
  2. Kontrollparameter:
    • Work in Progress (WIP): Die Begrenzung des Work in Progress ist entscheidend für die Aufrechterhaltung der Effizienz und Effektivität des Teams. Durch die Kontrolle und Anpassung des WIP können Teams Überlastung vermeiden und eine kontinuierliche und gleichmäßige Arbeitsflussgeschwindigkeit sicherstellen.
    • Persönlichkeitsorientierte Kommunikation: Die Anpassung der Kommunikationsstile und -methoden an die individuellen Persönlichkeiten im Team kann die Zusammenarbeit und das Verständnis innerhalb des Teams erheblich verbessern. Dieser Ansatz trägt dazu bei, Missverständnisse zu reduzieren und eine positive Teamdynamik zu fördern.
  3. Ordnungsparameter:
    • Produktvision und Product Goal: Diese geben die Richtung und den Zweck des Teams vor und sind entscheidend für die Ausrichtung und Motivation des Teams. Sie dienen als Leitfaden für Entscheidungen und Priorisierungen und helfen, die Bemühungen des Teams auf ein gemeinsames Ziel zu konzentrieren.
    • Taskboard: Das Taskboard ist ein visuelles Werkzeug, das nicht nur den Fortschritt und die aktuelle Arbeitslast darstellt, sondern auch zur Strukturierung der Teamaktivitäten und zur Förderung der Transparenz beiträgt. Es ist ein zentraler Bestandteil der Selbstorganisation, da es die Koordination und die Zusammenarbeit innerhalb des Teams erleichtert.
    Insgesamt bieten Ihre vorgeschlagenen Parameterausprägungen eine umfassendere Sicht auf die Anwendung von Scrum in einem selbstorganisierenden Team. Sie betonen die Bedeutung der Abschirmung vor externen Störungen, der Anpassung der Kommunikation an individuelle Bedürfnisse und der zentralen Rolle von Vision, Zielen und visuellen Tools bei der Förderung von Teamkohärenz und -ausrichtung. Diese Aspekte sind entscheidend für die Schaffung eines Umfelds, in dem agile Teams effektiv arbeiten und sich selbst organisieren können, im Einklang mit den Prinzipien der Synergetik.

Du

Perfekt, super hilfreich!

myGini

Das freut mich zu hören! Wenn Sie weitere Fragen haben oder Unterstützung bei einem anderen Thema benötigen, zögern Sie nicht, mich zu fragen. Viel Erfolg bei Ihren Projekten und in der Anwendung von Scrum!

Wie man aus diesen Beispielen sehen kann, erzeugt diese ‚statistische‘ 😉 Künstliche Intelligenz Antworten, die den Antworten eines Senior-Experten in nichts nachstehen.

Es ist deshalb sehr müßig, AI-Systeme als dumm zu bezeichnen, denn dann müsste man uns Menschen auch als dumm bezeichnen. – Was alles in allem wenig hilfreich ist und allenfalls unser ‚gekränktes‘ Selbstwertgefühl aufwertet.

Neben den Gefahren, die mit der Erstellung von GPTapps einhergehen können –  man siehe als Beispiel [5] – sehe ich ein viel größeres strukturelles Problem: Kann es sein, dass wir mit der flächendeckenden Verfügbarkeit von GPTapps immer träger und dümmer werden? Denn warum sollte ich mich noch den Mühen eines M4.0-Verständnisse oder den Mühen der Mathematik oder den Mühen des Programmierens oder…oder… aussetzen, wenn mir die gebratenen Tauben in Form von GPTapps in den Mund fliegen. Kann es sein, dass wir eine Bildungsungleichheit befeuern, in der nur noch wenige wissen, wie man AI-Systeme erstellt und der traurige Rest an Milliarden von Menschen nur noch konsumiert? Kann es sein, dass die GPTapps jede Form von erdenkbarem Missbrauch möglich machen? – Denn wer sagt uns, dass die GPTapp-Ersteller zum Wohl der Milliarden anderen Menschen handeln?

Eine neue Zeit ist angebrochen! Den Zug der KI-Innovationen zu stoppen, ist für mich keine Option. -Statt dessen ist ein Aufbruch erforderlich, der den Milliarden KI-Nutzern den souveränen Umgang mit der Technologie vermittelt.  

[1] ZDF (2023) Künstliche Intelligenz – Besser als wir? – Weltspiegel Doku – ZDFmediathek, https://www.zdf.de/daserste/weltspiegel/page-video-ard-kuenstliche-intelligenz–besser-als-wir—weltspiegel-doku-100.html

[2] MDR (2023) Better than human – Leben mit KI, https://www.ardmediathek.de/video/ard-wissen/better-than-human-leben-mit-ki/das-erste/Y3JpZDovL21kci5kZS9zZW5kdW5nLzI4MjA0MS8yMDIzMTIyOTA2MDAvbWRycGx1cy1zZW5kdW5nLTc4NzI

[3] Detholff C (2024) #KI ist monokontexturale Mustererkennung, denn … , https://www.linkedin.com/posts/conny-dethloff-6b9b0942_ki-innovation-lernen-activity-7150711017889509376-nplL/?utm_source=share&utm_medium=member_ios

[4] Hofert S (2024) KI ist dumm und zu konventionell für unsere Transformation!, https://www.linkedin.com/posts/svenjahofert_bigfive-vertikalenentwicklung-wust-activity-7151513159051161600-fRwu?utm_source=share&utm_medium=member_desktop

[5] Petereit D (2024) OpenAIs GPT-Store: Girlfriend-Bots zeigen die Probleme des offenen KI-Shops auf, https://t3n.de/news/openais-gt-store-girlfriend-bots-zeigen-die-probleme-des-offenen-ki-shops-auf-1601980/