AI & QC & M 4.0: Alles Quantum? oder von Quantum Computing Modell-Archetypen

Ein beeindruckender Podcast, erstellt von NotebookLM, fasst den Blog-Beitrag in englischer Sprache zusammen:

 

‚Alles Quantum?‘, Hinter dieser Frage verbirgt sich eine der spannendsten ungelösten Fragen der Physik: Gibt es eine einheitlich Quanten-Theorie, die die Welt des Kleinen (Quanten) und die Welt des Großen (Klassisch) integriert? Seit ungefähr 100 Jahren wird nach einer solchen Theorie gesucht.

Abbildung 0: Bild erzeugt mittels Dall-E: Die 7 Modelle des Blog-Artikels symbolisch dargestellt als Wissenschaftler, die um Erkenntnis kämpfen. Die Darstellung zeigt die Wissenschaftler auf einem futuristischen, quantenmechanischen Schlachtfeld.

In diesem Blog gehen wir es viel unbedeutender an: Ich stelle die von mir bisher erstellten Collective Mind Modelle (CM Modelle) aus der Welt der Quanten und der ‚klassischen‘ Welt zusammen und beleuchte deren Aussagemöglichkeiten. Diese Modelle lassen sich in drei Kategorien einteilen: Quantum-Modelle, die vollständig auf Prinzipien der Quantenmechanik beruhen. – Klassische Modelle, die keine Prinzipien der Quantenmechanik enthalten. – Hybride Modelle, die Prinzipien der Quantenmechanik und der klassischen Welt enthalten. Diese drei Modell-Kategorien zeigen in ihren Aussagemöglichkeiten verschiedene Potentiale, werfen teilweise neue Fragen auf und gehen damit deutlich über ihre Grenzen hinaus. Die vorgestellten Modell sind Modell-Archetypen, die ähnlich in völlig anderen wissenschaftlichen oder industriellen Anwendungsbereichen verwendet werden. Alle Modelle wurden unter großer Mithilfe von ChatGPT-o1 erstellt. Die Menge aber auch die völlig unterschiedlichen Modell-Herangehensweise, erstellt in einer erstaunlich kurzen Zeit, verdeutlichen die enorme Leistungssteigerung der hybriden kollektiven Intelligenz von Maschine und Mensch:   

Modell 1 – Agent Based Modelling der Teaminteraktionen: Dieses (bisher) klassische Modell verwendet Agent Based Modelling, um Team-Interaktionen zu beleuchten. Mitglieder eines Teams werden als Agenten modelliert. Agenten sind (stark vereinfachte) Repräsentanten von Menschen. Im Blog vom Juni 2023 ‚AI & M 4.0: (Collective Intelligence)**2 – Collective Mind Agent Based Model mit GPT-4/chatGPTplus’ wird ein Team mit 7 Teammitgliedern und einer unterschiedlichen Anzahl an Stakeholdern modelliert. Den Teammitgliedern werden feste MBTI Persönlichkeitsmerkmale zugewiesen und die Stakeholder erhalten per Zufall gemäß der MBTI Verteilung in der westlichen Welt ihre Persönlichkeit. Jedem der Agenten wird per Zufall eine 3-Ebenen Ziel-Hierarchie, bestehend aus einer abstrakten Zeichenkette pro Ebene, zugewiesen. Der Collective Mind (CM) im Team und auch im Stakeholder-Umfeld ist maximal, wenn alle Teammitglieder im Team (und im Stakeholder-Umfeld) die gleiche Ziel-Hierarchie haben. Der Kommunikationsaustausch wird durch die Persönlichkeitsprofile und eine Lernrate (getrennt nach Team und Stakeholdern) bestimmt. Dieses Setting und die Definition des Collective Mind über die Ziel-Hierarchie entspricht der Theorie und Praxis im Management 4.0: Die Ziel-Hierarchien gleichen sich mit unterschiedlichen Zeitskalen im Team und im Stakeholder-Umfeld an. Die Zeitskalen hängen von der Lernrate sowie der Team-Zusammensetzung bzw. Stakeholder-Zusammensetzung ab. Damit ist es möglich, den Einfluss der Persönlichkeit auf die zeitliche Dynamik des CM zu untersuchen und optimale Team-Zusammensetzungen zu studieren. Mit der Anbindung von KI-Systemen werden (zukünftig) KI-Agenten im Agent Based Modelling verwendet werden. – Dies ist eine Entwicklung, die vor kurzem einen neuen KI-Hype ausgelöst hat. In Zukunft werden sicherlich Agenten zusätzlich mit Quantum Eigenschaften (siehe nachfolgende Modelle) ausgestattet. Voraussetzung hierfür ist eine entsprechend effiziente hybride Hardware, bestehend aus klassischer und Quantum Hardware.

Modell 2 – Eigenvektoren der CM Ähnlichkeitsmatrix Analyse: Dieses klassische Modell beruht auf der Grundidee, Ähnlichkeiten der Kommunikation in einem Team oder in einer Gruppe für die Messung des CM zu verwenden. Hierzu wird die Kommunikation mittels zweier Teile, dem gesprochene Wort und der nonverbale Kommunikation über Sentiments (Emotionen), ausgedrückt.  Zentrale Größe ist deshalb eine komplexe Ähnlichkeitsmatrix CM, die aus zwei Teilen besteht. Die Ähnlichkeitsmatrix CM = Matrix der Text-Ähnlichkeiten + i* Matrix der Sentiments-Unterschiede. Für die Ähnlichkeitsmatrix CM lassen sich Eigenvektoren und Eigenwerte berechnen. Der Eigenvektor mit dem höchsten Eigenwert wird als CM Vektor interpretiert und der dazugehörige Eigenwert gibt die relative Stärke des CM an. Die Elemente des CM Vektors repräsentieren die Beitragsstärken der einzelnen Gruppen- oder Teammitglieder zum CM. Auf dieser Basis wurde im Blog ‚AI & M 4.0: Markus Lanz vom 30. Mai 2024: Eine Collective Mind Analyse‘ vom Juni 2024 die Gruppendynamik einer Gesprächsrunde analysiert. Es hat sich gezeigt, dass eine Untergruppe der Gesprächsrunde bestehend aus den Teilnehmern 2,4 und 5, bzw. in der Notation des nachfolgenden Modells 3 die Gruppenmitglieder B,D,E, im Wesentlichen den Collective Mind gestalten. Es ist also möglich, Kommunikationsmuster inkl. der nonverbalen Kommunikation transparent zu machen und die Träger des CM zu identifizieren.

Modell 3 – Ising-Modell der CM Ähnlichkeitsmatrix Analyse: Dieses Modell ist eine Form eines hybriden Modells und ergänzt Modell 2: Die Ausgangsbasis ist der Realteil der Ähnlichkeitsmatrix aus Modell 2. Die Ähnlichkeitsmatrix wird als Repräsentant eines Netzwerkes verstanden: Die Stärken der Ähnlichkeiten bilden die Kanten des Netzwerkes. Dieses klassische Netzwerk kann auf ein Ising Qubit-Netzwerk mit entsprechenden Kantenstärken abgebildet werden. Die Quantum Computing Berechnung mit der d-wave Annealing Technologie ermittelt die Energielandschaft dieses Netzwerkes. Die niedrigsten Energietäler oder das niedrigste Energietal repräsentiert den energetisch günstigsten Teamzustand und ist damit identisch mit dem CM Zustand. Die Anwendung auf die Gruppendynamik aus Modell 2 ergibt, dass die Untergruppe BDE den Collective Mind repräsentiert. Modell 3 ist ohne Probleme auf große Gruppen skalierbar, was bei der klassischen Berechnung mittels Eigenwert und Eigenvektoren nicht der Fall ist. Außerdem wird der CM-Beitrag anderer Teammitglieder-Kombinationen durch ihre Einordnung auf der Energieskala sofort und einfach sichtbar. Leider konnte bisher der Imaginärteil der Ähnlichkeitsmatrix nicht verwendet werden, da damit in Gebiete vorgestoßen wird, die auch noch in der Quantenmechanik gerade erst erforscht werden. – Die vollständige Abbildung der Ähnlichkeitsmatrix auf das d-wave System ist deshalb z.Zt. (noch) nicht möglich.    

Modell 4 – Quantum Cognition der Team Kommunikation: Dieses Modell ist ein vollständiges  quantenmechanisches Modell und beruht auf exakten Quanten-Berechnungen des CM auf einem klassischen Computer. Die eins-zu-eins Übertragung auf einen Quantencomputer ist nicht möglich. Damit ist das Modell nicht skalierbar, da die Berechnungen mit steigender Anzahl an Personen exponentiell wachsen. Das Modell wurde im Blog ‚AI & QC & M 4.0: Quantum Cognition für das Team-Management oder von der Macht der Mathematik‘ vom Oktober 2024 veröffentlicht. Die Idee ist hierbei die Persönlichkeitsdimensionen des Big Five (oder MBTI) Persönlichkeitsmodells in Qubit-Zustände abzubilden. Eine eindeutige positive Präferenz für eine Persönlichkeits-Dimension wird in eine Qubit  1 umgesetzt, eine eindeutige negative Präferenz in eine Qubit 0 und eine indifferente Präferenz wird als Superposition abgebildet. Ich wende die aus der Quantenmechanik bekannte Technik der Projektionsoperatoren auf das so abgebildete Persönlichkeitsmodell an: Über einen Interaktionsoperator wird zuerst die Interaktion im Team berechnet. Hieraus entsteht eine Team-Quantenwelle für die mittels eines CM Operators die Wahrscheinlichkeit für das Eintreten eines CM berechnet wird. Der CM Zustand wird als Zustand der quantenmechanischen Verschränkung interpretiert: Hierbei kann wahlweise danach unterschieden werden, ob alle Persönlichkeitsdimensionen verschränkt sind oder nur ein Teil der Dimensionen.
Die theoretischen Ergebnisse werden qualitativ durch viele praktische Erfahrungen gestützt: u.a hängt die Wahrscheinlichkeit ein CM auszubilden stark von der Teamzusammensetzung ab, die Reihenfolge der Interaktionen hat einen Einfluss auf die CM Dynamik, und ordnen die Teammitglied ihre Persönlichkeitspräferenzen nicht einem gemeinsamen Ziel unter, wird die Wahrscheinlichkeit der CM Ausbildung stark beschränkt. Nicht-lineare Effekte der Persönlichkeitsinteraktionen werden meines Erachtens erstaunlich gut abgebildet. Dies wirft die sehr weitreichende Frage auf, ob unsere Kognition und unsere Kommunikation zum Teil oder ganz den grundlegenden Prinzipien der Quantenmechanik unterliegen.    

Die nachfolgenden Modelle sind bisher nicht in einem Blog enthalten und werden hier erstmalig vorgestellt:

Modell 5 – Variationsmodell der Quantum Team Kommunikation: Dieses hybride Modell weist wie Modell 4 die Big Five Persönlichkeitspräferenzen Qubits zu. Diese Persönlichkeitspräferenzen dienen jedoch lediglich als Startwerte für eine Variationsrechnung. Ausgehend von den Startwerten werden mittels klassischer Variation Qubit-Superpositionen erzeugt. Ziel ist es, mittels Variation einen vollständigen verschränkten CM Zustand für eine ausgewählte Persönlichkeitsdimension (zum Beispiel die der Offenheit) zu finden. Es zeigt sich, dass ein solcher verschränkter Zustand existiert, wenn andere Persönlichkeitsdimensionen von den Startwerten abweichen. Im Beispiel-Team führt dies u.a. dazu, dass die unbestimmte Persönlichkeitspräferenz Gewissenhaftigkeit des Teammitgliedes Alice sich in eine Persönlichkeitsdimension Gewissenhaftigkeit mit geringer Präferenz wandeln muss. Dies zeigt an, dass sich ein CM oft nur dann ausbilden kann, wenn die Teammitglieder ihre persönlichen Präferenzen dem gemeinsamen Ziel oder der gemeinsamen Vision unterordnen. Mit diesem Modell ist es auch möglich, optimalere Teampräferenzen, mit denen sich ein CM leichter ausbildet, per Variation zu finden.

Modell 6 – Ising Modell der Team-Interaktion: Dieses Quantum Modell läuft auf der d-wave Hardware. Hierzu werden die Big Five Persönlichkeitspräferenzen in Qubit-Zustände umgesetzt, deren Wechselwirkungen über ein Ising-Modell erfasst werden (siehe Abbildung 1) – Jedes Teammitglied wird mittels n Qubits modelliert. Für jede der n Persönlichkeitsdimensionen ein Qubit.

Abbildung 1: Energie des Ising-Models, in dem die Qubits als Spins (magnetische Momente) si modelliert werden und deren Paar-Wechselwirkung durch Jij.

Die Qubit-Paar-Wechselwirkungen Jij stellen eine Matrix dar (siehe auch Modell 3 und dort die Verwendung einer Ähnlichkeitsmatrix). Die Einzelenergie hi und die Paar-Wechselwirkungen Jij werden leider per Intuition festgelegt. – Derzeit kenne ich keinen praktikablen Weg die Qubit Einzelenergie und die Qubit-Paar-Wechselwirkungen aus grundsätzlichen Modellen wie Modell 3 abzuleiten. Es wird zum Beispiel statt dessen angenommen, dass nur gleiche Persönlichkeitsdimensionen wechselwirken und gleiche Präferenzen das CM positiv beeinflussen und ungleiche Präferenzen das CM negativ beeinflussen. Unter Berücksichtigung dieser ‚intuitiven‘ Festlegung des Ising-Modells lassen sich Teammodelle auf ihre Eignung zur Ausbildung eines CM überprüfen.
Dieses Modell ist sehr einfach skalierbar sowohl in der Anzahl an Teammitgliedern als auch in der Aufnahme von zusätzlichen Persönlichkeitscharakteristika wie Werten oder Motiven. 

Modell 7 – Variationsmodell des QC Schaltkreis Ansatzes der Team-Kommunikation: Der sogenannte Quantum Schaltkreis Ansatz bedeutet, dass eine Kombination von Quanten-Schaltkreisen ausgewählt wird, um die Realität zu modellieren. Dieser Ansatz wird derzeit von nahezu allen QC Hardware Anbietern unterstützt.
Die Auswahl der Schaltkreise ist jedoch mehr oder weniger ambivalent. Die Auswahl ist auf keinen Fall stringent, da es nach meinem bisherigen Kenntnisstand keinen direkten Zusammenhang zwischen Schaltkreis-Ansatz und Problemstellung gibt. Der Quantum Schaltkreis Ansatz ist ein hybrides Modell, in dem ein quantenmechanisches Modell von ‚außen‘ klassisch variiert wird, bis der CM in einer bestimmten Variation erreicht ist. Diese ‚klassische‘ Variation wird durch geeignete Anpassung von Parametern in den QC Schaltkreisen erreicht. Die Anpassung erfolgt durch ML Optimierer mit oder ohne neuronale Netzwerke. Der Ansatz wird experimentell oder über eine exakte Berechnung für kleine Problemdimensionen validiert.– Diese Vorgehensweise wird meines Erachtens in (nahezu) allen QC Algorithmen verwendet, die auf Schaltkreisen beruhen und eine wissenschaftliche oder industrielle Anwendbarkeit verfolgen. In unserem Fall habe ich das Setting aus Modell 4 übernommen und den Ansatz mehrmals angepasst, um eine vollständige Verschränkung zu erreichen und dafür zu sorgen, dass der Überlapp der Wellenfunktionen aus Modell 4 und dem hiesigen Modell vollständig ist. Damit stelle ich sicher, dass der Ansatz nicht völlig beliebig ist. Der ausgewählte Schaltkreis muss mindestens ein Schaltkreiselement enthalten, das über Parameter variiert werden kann. Typisch ist die Rotation der Qubits entlang einer der drei Raum Axen. Die Rotationswinkel sind in diesem Fall die Parameter, die von außen mittels klassischer Variation verändert werden.  In unserem Modell werden die Y-Rotationswinkel von N RY-Schaltkreisen (N = Anzahl der Persönlichkeitsdimensionen*Anzahl an Teammitgliedern) variiert bis sich eine vollständige Verschränkung in den ausgewählten Persönlichkeitsdimensionen eingestellt hat.    

Abbildung 2: Beispiel Quanten-Schaltkreis für zwei Qubits, die zwei interagierende Personen oder zwei interagierende Persönlichkeitsdimensionen repräsentieren.

Ich erläutere im Folgenden den einfachen Quantenschaltkreis aus Abbildung 2, da dieser die grundlegende Idee der Quanten-Wellenfunktion in der Quantum Cognition und der Quantum Team Kommunikation gut wiedergibt.

Betrachtet man den gezeigten Quantenschaltkreis aus der Perspektive von Quantum Cognition oder von Quantum Team Kommunikation, so lässt sich der abstrakte mathematische quantenmechanische Formalismus auf eine Situation mit zwei Personen/Akteuren oder Agenten übertragen: In dem Bild steht Qubit 1 für die mentale oder kommunikative ‚Welle‘ von Person A und Qubit 2 für die von Person B. Die einzelnen quantenmechanischen Operationen können dann als kognitive oder kommunikative Prozesse interpretiert werden, bei denen Überzeugungen, Erwartungen oder Informationsinhalte von A und B miteinander in Beziehung gesetzt, transformiert und anschließend gemeinsam ausgewertet (gemessen) werden.

Ausgangszustand Ψ⟩:
Zunächst gehen wir davon aus, dass ∣Ψ⟩ den anfänglichen ‚gemeinsamen kognitiven Zustand‘ von Person A und Person B darstellt. Dieser Zustand kann bereits ein bestimmtes Maß an Unsicherheit, Superposition von Meinungen oder Perspektiven enthalten, in denen sowohl A als auch B noch nicht festgelegte Standpunkte haben. Es könnte sich zum Beispiel um ein gemeinsames Thema handeln, zu dem beide Personen eine innere Haltung entwickeln, aber noch nicht klar ist, welche Resultate oder Meinungen sich herauskristallisieren.

Person A (Qubit 1) – Hadamard-Gatter (H):
Das Hadamard-Gatter auf Person A’s Qubit lässt sich als ein „Perspektivwechsel“ oder als ein Wechsel von einer klaren, eindeutigen Überzeugung zu einem Zustand interpretieren, in dem Person A’s Meinung oder Einstellung gegenüber dem Thema in einer Superposition zweier gegensätzlicher Einstellungen liegt. Vor der Anwendung des Hadamard-Gatters könnte Person A eine relativ klare Meinung gehabt haben (z. B. Zustimmung = 1 oder Ablehnung = 0). Durch die Hadamard-Operation wird Person A’s innere Haltung in eine Überlagerung gebracht, in der A gleichzeitig eine gewisse Neigung zur Zustimmung und zur Ablehnung aufweist, aber eben noch nicht determiniert ist. In der Sprache der Teamkommunikation könnte dies bedeuten, dass Person A versucht, die Thematik aus einem anderen Blickwinkel zu betrachten, offen für neue Interpretationen ist oder sich von einem eindimensionalen zu einem breiteren Wahrnehmungsrahmen bewegt.

CNOT-Gatter zwischen Person A (Control) und Person B (Target):
Das CNOT-Gatter kann man als einen Prozess des kommunikativen Einflusses oder der kognitiven Kopplung interpretieren. Person A’s Zustand (nach dem Perspektivwechsel durch das H-Gatter) fungiert als eine Art ‚Steuerung‘ für Person B’s Einstellung. Ist Person A’s Haltung nach dem Hadamard und im Kontext des gemeinsamen Themas in eine Richtung, repräsentiert durch den Zustand 1, geneigt, so ändert sich daraufhin Person B’s innerer Zustand (z. B. von Zustimmung zu Ablehnung oder umgekehrt). Ist A in Richtung 0, bleibt B’s Haltung unverändert. Dieses Modell versucht, die Idee einzufangen, dass die neu gewonnene Offenheit oder Unsicherheit von Person A direkten Einfluss auf B’s innere Einstellung haben kann—etwa indem Person A gewisse Zweifel oder Ideen äußert, die Person B dazu bringen, ihren eigenen mentalen Zustand zu revidieren.

In der Teamkommunikation könnte man sagen: Durch den Denk- oder Argumentationsschritt, den Person A vollzieht (repräsentiert durch das Hadamard-Gatter), eröffnet sich ein neuer Möglichkeitsraum von Überzeugungen. Das CNOT symbolisiert dabei, dass Person B auf diese neue, komplexe Haltung von A reagiert und dadurch selbst ihren Standpunkt anpasst oder in Frage stellt. Auf diese Weise entstehen potenzielle Korrelationen zwischen den beiden mentalen Zuständen.

Messung:
Schließlich werden beide Qubits gemessen. Dies entspricht dem Moment im Teamprozess, an dem A und B ihre Meinungen äußern oder festnageln—sei es durch eine abschließende Entscheidung, ein Votum oder eine konkrete Stellungnahme. Die Messung transformiert den vorher unbestimmten, superponierten Zustand in ein klares Resultat: Beide Personen legen sich letztlich auf eine konkrete Haltung fest (0 oder 1).

Von der Warte der Quantum Cognition lässt sich die Messung als Übergang von potenziellen kognitiven Zuständen (Superpositionen von Optionen, Unsicherheiten, Überlagerungen von Bedeutungen) zu einem klaren, beobachtbaren Ergebnis deuten. Wenn A und B schließlich kommunizieren, Einigungen erzielen oder Positionen darstellen, ‚kollabiert‘ der gemeinsame kognitive Zustand in ein bestimmtes, messbares Resultat.

Fazit im Kontext von Quantum Cognition / Quantum Team Kommunikation:

  • Die Vorbereitungsbox ∣Ψ⟩ steht für den initialen kognitiven Gesamtzustand des Teams (A und B), der vielleicht eine gemischte oder unklare Haltung zu einem Thema enthält.
  • Das Hadamard-Gatter auf Person A entspricht einem Perspektivwechsel oder einer Öffnung für neue Sichtweisen.
  • Das anschließende CNOT-Gatter zeigt, wie Person A’s nun veränderte Sichtweise Person B’s mentalen Zustand beeinflusst und potenziell verschränkt oder zumindest miteinander kognitiv koppelt.
  • Die abschließende Messung repräsentiert den Moment der Festlegung, in dem aus den zuvor unbestimmten, interaktiven kognitiven Zuständen klare, beobachtbare Meinungen oder Handlungsentscheidungen abgeleitet werden.

So hilft uns Abbildung 2, den Prozess als eine Art gemeinschaftliches, quanten-ähnliches ‚Denken‘ zu verstehen, in dem Zustände nicht binär und fix sind, sondern sich durch Interaktion, Perspektivwechsel und finale Äußerungen in ein bestimmtes Ergebnis transformieren.

Zusammenfassend stelle ich fest:

Modell 1 – Agent Based Modelling erlaubt mit einfachen Mitteln das Studium von (nahezu) allen grundlegenden Team Eigenschaften. Bei Ausbau in Richtung AI und QC gibt es kaum Einschränkungen der Aussagekraft.

Modell 2 und 3 – Ähnlichkeitsmatrix hat mit Abstand die praktischste Aussagekraft hat und kann unmittelbar die Team Kommunikation in einem Hybriden Kollektiven Intelligenz Ansatz aus Mensch und Maschine aktiv unterstützen  

Modell 4 und 5 – Quantum Team Kommunikation stellen die Modelle dar, in die derzeit am wenigsten Annahmen einfließen. Es fließen nur zwei Annahme ein: Der CM Zustand wird als verschränkter Zustand verstanden und die Team-Interaktion unterliegt (auch) der Quantum Probability Theory. Diese Modelle eröffnen damit den Zugang zu einem völlig neuen Verständnis von menschlicher Kommunikation.

Modell 6 – Ising Modell ist als quantenmechanisches Modell sehr einfach, enthält jedoch (derzeit noch) die meisten Annahmen und dient damit eher zur Sondierung der Ergebnisse aus den anderen Modellen.

Modell 7 – Quanten Schaltkreise ist als quantenmechanisches Modell recht einfach. Vermittelt einerseits Metapher-ähnliche Einblicke in die quantenmechanische Interpretation der Team Kommunikation andererseits fehlt (mir derzeit) der intuitive Zugang, den die Modell 4 und 5 haben.

Die nachfolgende Tabelle 1 fasst die zentralen Modell-Charakteristika zusammen:

Modell  KategorieEinschränkungAussagekraft
1 – Agent Based Modelling der Team-InteraktionenKlassisch (hybrid, bei Ausbau mittels Quantum Cognition)Derzeit meistens noch einfache klassische AgentenGrundlegende Aussagen zur CM-Dynamik in unterschiedlichen Teams
2 – Eigenvektoren der CM Ähnlichkeitsmatrix AnalyseKlassischGeringe SkalierungFür kleine Teams: CM Stärke und Beitrag jedes Teammitglieds zum CM
3 – Ising-Modell der CM Ähnlichkeitsmatrix AnalyseHybrid (Klassisch mit Quantum Variation)CM Stärke und Beitrag des Teammitglieds zum CM, einfache Interpretation des CM Potentials von Teams mittels einer Energielandschaft
4 – Quantum Cognition der Team KommunikationQuantum (Berechnung auf klassischem Rechner)Keine SkalierungFür kleine Teams: Erstaunliche qualitative Übereinstimmung bzgl. Teamdynamik zwischen Theorie und Erfahrung
5 – Variationsmodell der Quantum Team Kommunikation (basierend auf Modell 4)Hybrid mit klassischer Variation (Berechnung auf klassischem Rechner)Keine SkalierungFür kleine Teams: Aussage zu ‚optimalen‘ Teams und Einblick in die Anpassungs-notwendigkeiten der Team-Persönlichkeiten  
6 – Ising Modell der Team-InteraktionQuantumMappen auf Ising-Modell mit intuitiven Annahmen aus den Modellen 4 und 5Aussagen zu optimalen Teams, ähnlich wie Modell 5, jedoch unter Berücksichtigung der Einschränkungen
7 – Variationsmodell des QC Schaltkreis Ansatzes der Team-KommunikationHybrid mit klassischer VariationMappen auf QC-Schaltkreise‚Metaphorische‘ Erklärung einer Quantum Cognition bzw. Quantum Team Communication auf der Basis von einzelnen Schaltkreisen, Auffinden optimaler Teams
Tabelle 1: Übersicht der Modell-Charakteristika der sieben Modelle

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert

I accept that my given data and my IP address is sent to a server in the USA only for the purpose of spam prevention through the Akismet program.More information on Akismet and GDPR.

Diese Website verwendet Akismet, um Spam zu reduzieren. Erfahre mehr darüber, wie deine Kommentardaten verarbeitet werden.