AI & QC & M 4.0: Quantum Cognition für das Team-Management oder von der Macht der Mathematik

(Die in diesem Blog-Beitrag enthaltene recht komplexe Mathematik der Quantenmechanik sowie die dazugehörigen Programme wurden mit der AI-Assistenz von ChatGPT4o1-preview erhalten. ChatGPT4o wurde für die Überprüfung des Blog-Beitrages verwendet. Der enthaltene Podcast wurde von der Google AI noteBookLM erstellt.)

Der nachfolgender Podcast fasst den Blog-Beitrag in englischer Sprache zusammen und wurde von der Google AI notebookLM erzeugt:

Abbildung 0:  Ein Bild, erzeugt von ChatGPT/DALL.E, das den Blog-Beitrag visuell unterstützt und im Stil von van Gogh gestaltet ist. Es zeigt Teammitglieder in einer dynamischen Interaktion, die die Konzepte der Quantum Cognition durch wellenartige Verbindungen symbolisiert.

Dieser Blog-Beitrag richtet sich an Leser mit einem Hintergrund in Management sowie an jene, die Interesse an quantenmechanischen Konzepten im Bereich der Kognition und Teamdynamik haben: Keine Angst vor Mathematik ist hilfreich!

Bei den Recherchen zu dem vorherigen Quantum Computing Blog-Beitrag bin ich auf den Begriff ‚Quantum Cognition‘ gestoßen [1]. Sofort wenn man den Wikipedia Artikel oder die wissenschaftlichen Artikel [2],[3] liest, wird man darauf hingewiesen, dass Quantum Cognition nichts mit Quantum Mind [4] oder der Idee, dass Bewusstsein durch Quanteneffekte hervorgerufen wird, zu tun hat. – Wenngleich das letzte Wort hierzu sicherlich noch nicht gesprochen ist.

Bei dem Thema Quantum Cogition geht es um die verblüffende Feststellung, dass kognitive Verzerrungen wie u.a. Tversky und Kahneman sie beschrieben haben [5], schlecht oder überhaupt nicht durch die klassische Wahrscheinlichkeitstheorie (Classical Probability Theory) beschrieben werden, aber sehr wohl durch die Quanten Wahrscheinlichkeitstheorie (Quantum Probability Theorie), wie sie im mathematischen Formalismus der Quantenmechanik enthalten ist. Das ist schon irgendwie faszinierend…und zeigt meines Erachtens die ungeheure Macht der Mathematik: Denn plötzlich wird ein mathematischer Formalismus, der in einem Gebiet entwickelt wurde, auf einem völlig anderen Gebiet angewendet.

Ich beschäftige mich in diesem Blog-Beitrag zuerst mit den Grundlagen von Quantum Cognition. Anschließend wende ich diese Grundlagen auf die Teamkommunikation an. Bei der Konzeption des Collective Mind vor ca. zwei Jahrzehnten kam die Idee auf, den Collective Mind als sogenannten verschränkten Zustand der mentalen Modelle der Teammitglieder zu verstehen. Ich werde zeigen, dass mit dem Formalismus der Quantum Cognition genau dies möglich ist. Damit ergänze ich die in den vorhergehenden Blog-Beiträgen beschriebenen klassischen Modelle des Collective Mind. – In zukünftigen Blog-Beitragen besteht Raum für eine Integration beider Ansätze😉.

Zuerst zu den Grundlagen von Quantum Cognition. Quantum Cognition benutzt drei Schlüsselelemente der Quantenmechanik:

  • Superposition (Überlagerung): Ein mentaler Zustand kann als Kombination mehrerer möglicher Zustände betrachtet werden. Damit eröffnet sich die Möglichkeit, Ambiguitäten im menschlichen Verhalten zu modellieren, sowie Unentschlossenheit in Entscheidungsprozessen zu beschreiben.
  • Nicht-Kommutativität (Interferenz): Wie in der Quantenphysik können mentale Zustände sich gegenseitig beeinflussen, was zu Verstärkungs- oder Abschwächungseffekten führt und einige nichtlineare Entscheidungsprozesse erklärt. Psychologische Beispiele hierfür sind das Priming und die verschiedenen mentalen Verzerrungen, u.a. auch der Bias.
  • Verschränkung (Entanglement): Unterschiedliche kognitive Variablen können stark miteinander verbunden sein, so dass der Zustand einer Variablen unmittelbar den Zustand einer anderen beeinflusst. Das Hebb’sche Gesetz beschreibt diesen Effekt: Psychologische Beispiele hierfür sind Gefühle, die unmittelbar die Wahrnehmung beeinflussen.

Ich habe diese drei Schlüsselelemente in den Abbildungen 1-3 skizziert. Die in diesen Abbildungen enthaltenen mathematischen Ausdrücke der Quantenmechanik sind meines Erachtens nicht wichtig für ein Verstehen der wesentlichen Aussagen dieses Blog-Beitrages. Sie mögen aber dem ein oder anderen vielleicht beim besseren Verständnis helfen.

Ich erläutere im Folgenden die in Abbildung 2 enthaltenen Aussagen zum Schlüsselelement der Nicht-Kommutativität (Interferenz) etwas genauer, u.a. deswegen weil dort der Begriff des Projektionsoperators eingeführt wird, der für die Quantenmechanik und die Quanten Cognition von großer Bedeutung ist. Für die beiden anderen Schlüsselelemente verweise ich auf die Abbildungen 1-3.

Wenn wir an eine Person oder an ein Ding denken, so rufen wir ein mentales Konzept von dieser Person oder diesem Ding ab. Nehmen wir zwei Personen aus der amerikanischen Politik: Clinton und Gore. Jeder von uns hat wahrscheinlich ein mehr oder weniger ausgeprägtes Konzept bzw. eine mentale Repräsentation oder eine Idee von Clinton und Gore. Dieses Konzept wird u.a. durch Interaktion mit der Umwelt aktiviert. In unserem Clinton-Gore-Beispiel sind Konzepte wie ‚Clinton‘ und ‚Gore‘ die grundlegenden Einheiten, die wir modellieren möchten: Nehmen wir an, jemand würde uns die Frage stellen, ob wir Clinton vertrauenswürdig finden und anschließend die Frage stellen, ob wir Gore vertrauenswürdig finden. Psychologische Experimente haben gezeigt, dass die Wahrscheinlichkeit, beide Fragen mit Ja zu beantworten auch von der Reihenfolge der Fragen abhängt [3]. D.h. die Fragen rufen Konzepte auf und die Konzepte beeinflussen sich gegenseitig, aber nicht-kommutativ. Nicht-kommutativ bedeutet, dass es auf die Reihenfolge der Fragestellung ankommt. – Ein sehr erstaunliches Phänomen. In der Welt der Quanten kennt man entsprechende Phänomene: Die Reihenfolge von Messungen hat Einfluss auf die Ergebnisse der Messungen.

In der Quantenmechanik verwendet man sogenannte Projektionsoperatoren, die eine Messung bzw. Messreihenfolge repräsentieren. Mit einem Projektionsoperator projiziert man den Ausgangszustand auf den gemessenen Zustand. Damit kann man Wahrscheinlichkeitsaussagen treffen, wie wahrscheinlich es ist, dass der Ausgangszustand in den gemessenen Zustand übergeht.

Entsprechend werden in der Quantum Cognition kognitive Projektionsoperatoren zur Modellierung der Aktivierung eines kognitiven Konzepts in einer Person benutzt. – Es findet sozusagen eine Messung statt.

Nehmen wir an, dass bei der Frage nach Clinton bei einer befragten Person eine gewisse Ambivalenz (vertrauenswürdig, nicht-vertrauenswürdig) bezüglich der Antwort vorhanden ist. Für Gore nehmen wir eine andere Ambivalenz an. Wir nehmen auch an, dass bevor die Fragen gestellt werden, es noch keine Manifestationen von Präferenzen gibt. – Es gibt zum Beispiel keinen Bias durch eine gerade stattgefundene Diskussion zu diesem Thema. Die Projektionsoperatoren konstruieren wir als ambivalente Mischung (Superposition) aus einem vertrauenswürdigen und einem nicht-vertrauenswürdigen Basiskonzept. Hierbei kann es durchaus sein, dass eine befragte Person Clinton in dieser ambivalenten Mischung für vertrauenswürdiger als nicht-vertrauenswürdig hält. Bevor die Frage gestellt wird, ist dies jedoch nicht sichtbar, die innere Haltung ist unentschieden. Entsprechendes gilt natürlich für eine andere ambivalente Mischung bei Gore.

In der Quantenmechanik bezeichnet man die Basiskonzepte als Vektoren im sogenannten Hilbertraum. Der Hilbertraum ist ein spezieller mathematischer Raum, in dem die Vektoren quantenmechanischen Operationen unterliegen. Die Projektionsoperatoren sind solche Operationen und werden als Tensoren (haben das Aussehen von Matrizen) beschrieben, die auf diese Vektoren wirken. – Tensoren sind auch die zentralen Operationen in klassischen AI-Systemen. – Im Quanten Computing implementieren die Qubits die Vektoren und die Wechselwirkung der Vektoren entsprechen den Tensoren.

Wendet man den Formalismus der Quantenmechanik an, so kann man zeigen, dass nicht-kommutative Projektionsoperatoren, angewendet auf ambivalente innere Haltungen, eine Interferenz in den Antworten erzeugen. Die Basiskonzepte ‚Clinton‘ und ‚Gore‘ interferieren wie Wellen in der Physik: U.a. interferiert das vertrauenswürdige Basiskonzept mit dem nicht-vertrauenswürdigen Basiskonzept. Dies führt auch dazu, dass die Reihenfolge der Fragen entscheidend ist, da in Abhängigkeit der Reihenfolge unterschiedliche Interferenzen auftreten. Dies bedeutet, dass die gemeinsame Wahrscheinlichkeit Clinton zuerst als vertrauenswürdig einzustufen und anschließend Core, verschieden ist von der gemeinsamen Wahrscheinlichkeit Core zuerst als vertrauenswürdig einzustufen und anschließend Clinton. – Magisch…jedoch genau solche Effekt werden tatsächlich gemessen:

Wird zuerst nach Clinton als vertrauenswürdig gefragt und dann nach Gore, ergibt sich im statistischen Mittel, dass 50% der Befragten Clinton für vertrauenswürdig halten, und 68% Gore. Stellt man die Reihenfolge um, so geben 60% Gore als vertrauenswürdig an und 57% Clinton [3]. Es entsteht also eine Diskrepanz von ca. 7-8 %, hervorgerufen durch die Reihenfolge. Mit Hilfe der Formeln in Abbildung 2 zu den Wahrscheinlichkeiten lassen sich die Wahrscheinlichkeiten P Clinton dann Gore = 0,340 und P Gore dann Clinton = 0,342 berechnen. Die gemessenen Wahrscheinlichkeiten sind klassische statistische Wahrscheinlichkeiten, enthalten also Aussagen zu einer mittleren mentalen Ambivalenz aller befragten Personen. Berücksichtigt man dies, so kann man mit Hilfe des quantenmechanischen Formalismus Aussagen über die mittlere Ambiguität und Interferenz der mentalen Konzepte treffen:

In der Sequenz ‚Clinton dann Gore‘ zeigen die Berechnungen, dass weniger Ambiguität bezüglich Gore vorliegt, wenn zuerst nach Clinton gefragt wird. Dies deutet darauf hin, dass die mentale Repräsentation von Gore klarer oder positiver ist, wenn sie durch die vorherige Frage nach Clinton beeinflusst wird.

In der Sequenz ‚Gore dann Clinton‘ zeigen die Berechnungen, dass die Ambiguität bezüglich Clinton höher ist, wenn Gore zuerst gefragt wird. Dies deutet daraufhin, dass die mentale Repräsentation von Clinton stärker vom Kontext und vorherigen Informationen abhängt.

Abbildung 1: Superposition von mentalen Basiskonzepten

Abbildung 2: Nicht-Kommutativität und Interferenz von Basiskonzepten

Abbildung 3: Verschränkung von Basiskonzepten

Nach dieser kleinen Einführung in die Schlüsselelemente der Quantum Cognition, wende ich mich dem deutlich komplexeren Thema der Team-Kommunikation bzw. der Collective Mind Modellierung eines Teams zu.

Ich wollte hier ursprünglich ein Beispiel mit drei Teammitgliedern und den Big Five Persönlichkeitsmerkmalen, die einen Hilbertraum aufspannen, skizzieren. Jedoch haben die ersten Tests mit einem dazugehörigen Simulations-Programm auf einem klassischen Computer ergeben, dass dieses Programm schon nicht mehr auf meinem Laptop mit 16 GB Hauptspeicher lauffähig ist. Der Grund liegt darin, dass ein Hilbertraum mit 32768 Dimensionen aufgespannt wird. Die Dimension 32768 = 2 hoch (3*5), ergibt sich aus 3 Teammitglieder mit jeweils 5 Big Five Dimensionen. Jede Big Five Dimension wird durch einen Zustand 1 (hohe Ausprägung) und 0 (niedrige Ausprägung) repräsentiert. Es werden also für die Beschreibung der Wechselwirkung der Personen Tensoren (Matrizen) benötig, die eine Größe 32768*32768 haben.  

Statt dessen skizziere ich hier ein Beispiel aus 3 Teammitgliedern und lediglich 2 Big Five Dimensionen, nämlich Offenheit und Gewissenhaftigkeit. Damit wird ein Hilbertraum von 64 Dimensionen aufgespannt. Die Berechnungen hierzu liegen im Sekundenbereich.

Die drei Teammitglieder nenne ich Alice, Bob und Charlie. Diese Namen sind Klassiker in jeder Literatur über Quantenmechanik.

Ich wähle als Start für meine Berechnungen folgende Big Five Dimensionen:

 OffenheitGewissenhaftigkeit
Alicehochunbestimmt
Bobunbestimmthoch
Charlieunbestimmtniedrig
Tabelle 1: Ausgangszustände der Big Five Dimensionen der Teammitglieder Alice, Bob und Charlie

Ein Zustand, der als hoch bezeichnet wird, startet mit einer Qubit ‚1‘. Ein Zustand, der als niedrig bezeichnet wird, startet mit einer Qubit ‚0‘ und ein unbestimmter Zustand wird als Superposition der Zustände hoch und niedrig modelliert. Abbildung 4 enthält diese Aussagen in einer etwas formalisierten Form.

Abbildung 4: Anfangszustände und Interaktionsoperator im Teammodell

Da wir 2 Big Five Dimensionen für 3 Teammitglieder haben, benötigen wir 6 Qubits. Wir führen keine Berechnung auf einem Quantencomputer durch, sondern arbeiten mit einer Quantensimulation, also mit einer quantenmechanischen Berechnung, durchgeführt auf einem klassischen Computer, meinem Laptop.

Diese Berechnung soll folgende Fragenstellungen untersuchen:

Wie hoch ist die Wahrscheinlichkeit, dass alle Mitglieder eine hohe Offenheit aufweisen, obwohl nur Alice dies als Präferenz mitbringt?

Wie hoch ist die Wahrscheinlichkeit, dass alle Mitglieder eine hohe Gewissenhaftigkeit aufweisen, obwohl nur Bob dies als Präferenz mitbringt?

Wie hoch ist die Wahrscheinlichkeit, dass sich das System in einem Collective Mind Zustand befindet und zwar in zwei Varianten. Variante 1: alle Offenheit-Qubits sind verschränkt. Variante 2: alle Offenheit-Qubits und alle Gewissenhhaftigkeits-Qubits sind verschränkt.

Wir definieren wieder einen Projektionsoperator, der in diesem Fall ein Interaktionsoperator ist und nehmen der Einfachheit hier an, dass lediglich gleiche Big Five Dimensionen der Teammitglieder miteinander wechselwirken. Dies ist keine grundsätzliche Einschränkung, sondern ist lediglich der schon recht hohen Komplexität geschuldet. Abbildung 4 zeigt die wesentlichen quantenmechanischen Gleichungen.

Der Interaktionsoperator​ modelliert die Tendenz von Personen, sich aufgrund von Ähnlichkeiten in ihren Merkmalen zu beeinflussen. Wenn zwei Personen ähnliche Zustände für ein Merkmal haben, verstärkt der Operator diese Ähnlichkeit durch die Interaktion.

Wir können auf dieser Basis Wahrscheinlichkeiten für den Übergang aller Teammitglieder zu hoher Offenheit bzw. hoher Gewissenhaftigkeit berechnen. Damit können wir zwei der oben gestellten Fragen beantworten.

Um die dritte Frage zu beantworten, wie wahrscheinlich ist das Eintreten eines Collective Mind (CM), ist es wieder nötig entsprechende Projektionsoperatoren für Variante 1 und Variante 2 der Verschränkung zu bilden.

Dieser Collective Mind Operator projiziert ausgehend vom vorher berechneten Interaktions-Zustand auf einen Zustand maximaler Verschmelzung der individuellen Zustände zu einem gemeinsamen Bewusstsein.

CM Variante 1: Alle Qubits sind verschränkt. Dies repräsentiert einen Zustand, in dem alle Personen in Bezug auf beide Persönlichkeitsmerkmale vollständig synchronisiert sind.

CM Variante 2: Nur die Offenheits-Qubits sind verschränkt. Lediglich die Dimension Offenheit ist verschränkt, während Gewissenhaftigkeit variiert.

Abbildung 5 zeigt die quantenmechanischen Collective Mind Projektionsoperatoren für Variante 1 und 2.

Abbildung 5: Die Collective Mind Operatoren zu Variante 1 und 2

Nun zu den Ergebnissen: Das recht komplexe Python Programm für die Colab Umgebung wurde mit der AI-Assistenz von ChatGPT 4o1-preview erstellt. Hierbei wurde die Quantum Toolbox QuTIP [6] für die quantenmechanischen Tensor-Operationen verwendet.

Die modellierten Ergebnisse entsprechen qualitativ meinen Erfahrungen in Teams:

Die Ausbildung von einer Team-Präferenz für eine der Big Five Dimensionen hängt von der Reihenfolge der Interaktionen im Team ab: Je nachdem wer zuerst spricht entwickelt sich eine unterschiedliche Dynamik. Es ist von Vorteil, wenn zuerst Personen mit ähnlichen Präferenzen die Kommunikation starten. Sie unterstützen selbst dann Team-Präferenzen, wenn sie selbst keine Präferenz darin haben.  

Die Wahrscheinlichkeit für eine Team-Präferenz Offenheit ist moderat, also nicht oberhalb von 50%, wenn nur eine Person diese als persönliche Präferenz hat.

Falls die Präferenz Gewissenhaftigkeit in einem Team durch eine Person vorhanden ist, kann es sein, dass sich die Team-Präferenz Offenheit in einem Team überhaupt nicht ausprägt.

Falls die persönliche Präferenz Gewissenhaftigkeit nur einmal (oder auch mehrmals, gemäß meiner Erfahrung) im Team vorhanden ist, ist die Wahrscheinlichkeit groß, dass sich keine Team-Präferenz Gewissenhaftigkeit ausbildet.

Abbildung 6 zeigt ein Beispiel für ein Szenario, in dem ich die weiter oben angegebenen persönlichen Präferenzen der Teammitglieder für Szenario 4 verändert habe: Die Präferenz Offenheit bleibt wie oben angegeben, jedoch setze ich die Präferenz Gewissenhaftigkeit für alle Teammitglieder auf ‚unbestimmt‘. Das erstaunliche hier ist, dass sich eine gewisse Wahrscheinlichkeit für eine Team-Präferenz Gewissenhaftigkeit ausbildet, obwohl keines der Teammitglieder diese Präferenz hat. In anderen, hier nicht gezeigten Szenarien, führt schon eine persönliche Präferenz Gewissenhaftigkeit immer zu einer sehr geringen Team-Präferenz Gewissenhaftigkeit. Auch dies entspricht meiner Erfahrung.

Abbildung 6: Die Wahrscheinlichkeiten zur Ausbildung der Team-Präferenzen Offenheit und Gewissenhaftigkeit in Abhängigkeit der Interaktionsreihenfolge. Die persönlichen Präferenzen Offenheit von Alice, Bob und Charlie entsprechen den ursprünglich festgesetzten. Die persönlichen Präferenzen Gewissenhaftigkeit für alle drei Personen wurde für dieses Szenario auf unbestimmt gesetzt.

Abbildung 7 zeigt für das Szenario 4 aus Abbildung 6 die Wahrscheinlichkeiten der Ausbildung eines Collective Mind für die Varianten 1 und 2. Die Wahrscheinlichkeit der Ausbildung eines Collective Mind für die Variante 1 (Offenheit und Gewissenhaftigkeit verschränkt) ist deutlich geringer als für Variante 2 (nur Offenheit verschränkt). Die Ausbildung des Collective Mind hängt auch ein wenig von der Interaktionsreihenfolge ab. Jedoch ist diese Abhängigkeit sehr gering: Wenn sich überhaupt ein Collective Mind ausbildet, so hat die Interaktionsreihenfolge kaum noch Einfluss darauf.

Abbildung 7: Die Wahrscheinlichkeiten zur Ausbildung eines Collective Mind für die Varianten 1 (Offenheit und Gewissenhaftigkeit sind verschränkt) und Variante 2 (nur Offenheit ist verschränkt).

Zusammenfassend stelle ich fest:

Der Quantum Cognition Formalismus liefert keine unsinnigen Ergebnisse. Im Gegenteil: Die Ergebnisse decken sich qualitativ mit meinen Erfahrungen. Ich finde die qualitative Interpretation der Ergebnisse erstaunlich nahe an der Praxis: So nahe, dass es schon sehr an Magie grenzt.

Der Nachteil ist, dass der Quantum Cognition Formalismus sehr anspruchsvoll ist. Ohne die AI-Assistenz von ChatGPT4o1-preview wäre es mir nicht möglich gewesen, diese Berechnungen durchzuführen. ChatGPT4o1-preview strauchelte auch einige Male. – Gemeinsam war es jedoch gut möglich dies aufzufangen.

Die Übertragung der Berechnungen auf ein QC Hardware System würde es erlauben, Teamgrößen von 7-10 Teammitgliedern zu modellieren. – Jedoch ist dies ein deutlicher Schritt in Richtung Komplexität, der es aber eventuell wert sein könnte.

[1] Wikipedia (2024a) Quantum Cognition, https://en.wikipedia.org/wiki/Quantum_cognition

[2] Brody D C (2023) Quantum formalism for the dynamics of cognitive psychology, https://www.nature.com/articles/s41598-023-43403-4

[3] Pothos E M und Busemeyer J R (2022) Quantum Cognition, Annual Review of Psychology, https://www.annualreviews.org/content/journals/10.1146/annurev-psych-033020-123501

[4] Wikipedia (2024b) Quantum Mind, https://en.wikipedia.org/wiki/Quantum_mind

[5] Oswald A, Köhler J, Schmitt R (2018) Project Management at the Edge of Chaos, Springer, Heidelberg

[6] QuTIP (2024) QuTIP Quantum Toolbox in Python, https://qutip.org/

AI & M 4.0: Markus Lanz vom 30. Mai 2024: Eine Collective Mind Analyse

Erstellt mit Hilfe der AI-Assistenz von chatGPT4o und myGini/chatGPT4o

Der Collective Mind ist der zentrale Begriff im Management 4.0. myGini, der Management 4.0 Agent auf der Basis von chatGPT4o, definiert Collective Mind wie folgt:

Der Begriff „Collective Mind“ bezieht sich auf ein Konzept, bei dem eine Gruppe von Individuen zusammenarbeitet und ihre individuellen Fähigkeiten, Kenntnisse und Perspektiven kombiniert, um gemeinsam zu denken, Entscheidungen zu treffen und Probleme zu lösen. Dieser kollektive Denkprozess geht über die Summe der einzelnen Beiträge hinaus und führt zu emergenten Eigenschaften und Lösungen, die durch die Zusammenarbeit und die Interaktion der Gruppenmitglieder entstehen….

Ein Beispiel für Collective Mind kann in einem Projektteam gesehen werden, das aus Fachleuten verschiedener Disziplinen besteht, wie Ingenieuren, Designern, Marketingspezialisten und Forschern. Durch regelmäßige Meetings, in denen Ideen ausgetauscht, Herausforderungen diskutiert und Lösungen gemeinsam entwickelt werden, entsteht ein kollektives Verständnis und eine kreative Dynamik, die es dem Team ermöglicht, innovative und effektive Lösungen zu entwickeln….

Ich hätte es nicht besser ausdrücken können. – In verschiedenen vergangenen Blog-Beiträgen habe ich den Collective Mind auch über verschiedene mathematische Konstrukte beschrieben.

Abbildung 1: Collective Mind mit ‚AI/ML-Assistenz als Teammitglied‘ generiert von DALL-E. – Ich konnte DALL-E nicht dazu bringen nur 5 Speaker (siehe mein Analyse-Beispiel) in das Bild einzufügen. Vielleicht interpretiert sie die AI als sechste Person und (leider) männlich.

Ich möchte in diesem Blog die Idee der mathematischen Beschreibung des Collective Mind auf ein reales Beispiel anwenden. Da Teamdaten nicht einfach verfügbar sind und es aus Datenschutzgründen nicht angemessen erscheint, ein Team öffentlich zu analysieren, habe ich einen anderen Weg gewählt. Ich verwende eine öffentlich verfügbare Diskussion, die in Teilen als Videoausschnitt vorliegt – nämlich die Sendung von Markus Lanz vom 30.05.2024 ‚Muslime in Deutschland: Zunehmend isoliert?‘ [1].

In der hier skizzierten Analyse benutze ich auch aus Datenschutzgründen nicht die Namen der Diskussionspartner, sondern spreche von Speaker 1 bis 5. – Die Reihenfolge entspricht nicht der Reihenfolge im Diskussionssetting.

Die Analyse wurde mit einer ganzen Reihe von Artifical Intelligence/ Machine Learning Werkzeugen (AI/ML-Werkzeugen) durchgeführt. Die Ergebnisse sind nicht alle im Blog enthalten. Die folgende Tabelle enthält die wichtigsten Werkzeuge. Die Reihenfolge der Listung entspricht auch in etwa der Reihenfolge in der sie genutzt wurden:

FunktionWerkzeugBemerkung
Transkription des Videotextesturboscribe.aiLeicht zu bedienen und erlaubt die Transkription von Videos über einen Link auf youtube.
Analyse von Video-, Bild- und Audio-Dateien auf Gefühlehume.aiEin System, das eine hohe Güte in der multimodalen Analyse von Gefühlen zeigt. Ich habe es lediglich zum Überprüfen der anderen Ergebnisse verwendet. Ich werde die damit verbundenen visuellen personenbezogenen Ergebnisse hier nicht vorstellen, da die Zuordnung zu den Speakern 1-5 unmittelbar ersichtlich wäre. Die Ergebnisse lassen sich auch in eine .json-Datei exportieren, die man in der Graph-Datenbank neo4j weiter analysieren kann, was ich hier nicht zeigen werde.
Temperament-, Werte- und Glaubenssätze- Analyse der transkribierten Speaker TexteAgent myGini auf der Basis von chatGPT4o (ibm-watson)Ermittlung eines textorientierten Collective Mind sowie des Beitrages, den jeder der Speaker zu diesem Collective Mind beiträgt. Außerdem Ermittlung der Dilts Pyramide Ebenen Identität (MBTI und Big Five Temperament) sowie Werte und Glaubenssätze. (Ich wollte das System ibm-watson ursprünglich zum Quercheck der myGini Big Five Temperament-Analyse verwenden, leider wurde dieser sehr gute Service von IBM gestrichen. Die übrig gebliebenen Sprachanalysen inkl. Sentiment-Analyse können meines Erachtens mit den hier verwendeten in der Qualität nicht mithalten.
Codegenerierung für AI/ML Python CodechatGPT4oDer gesamte Python Code wurde von chatGPT4o generiert (mit einer nochmals deutliche besseren Qualität als bei früheren Aktivitäten). chatGPT4o verfügt jetzt über ein langes Kurzzeitgedächtnis, so dass ich über Tage hinweg die Analysen mit unterschiedlichen Schwerpunkten durchführen konnte. Die Fehlerrate ist gering (Vorsicht ist trotzdem geboten!). Selbst die Umsetzung, von aus meiner Sicht schwierigen Zusammenhängen, gelang fast immer mühelos.
Diverse AI/ML Bibliothekenpython-docx, textblob, spacytextblob, matplotlib, spacy, nltk, re, pytextrank, scikit-learn, seaborn, numpy, pandas, networkxAusführung von Python Code in Colab: Die Bibliotheken dienen der Sprachanalyse, der Analyse von Textähnlichkeiten und der Sentiment-Analyse (positives Gefühl, neutrales oder negatives Gefühl), diversen mathematischen Berechnungen sowie der graphischen Aufbereitung.
Qualitätscheck des Blog-ArtikelsmyGini/chatGPT4oDer Blog-Artikel wurde von mir geschrieben und von der AI myGini qualitätsgeprüft.
Tabelle 1: Übersicht der eingesetzten AI/ML-Werkzeuge

Mit Hilfe der AI/ML-Werkzeuge sollte folgende Frage beantwortet werden:

Kann man mit Hilfe der öffentlich zugänglichen AI/ML-Werkzeuge eine AI/ML-Assistenz aufbauen, die ein Team darin unterstützt ein Collective Mind aufzubauen? Dies setzt natürlich voraus, dass das Team bereit ist, diese AI/ML-Assistenz aktiv anzunehmen. – Wozu man die analysierten Ergebnissen in Führung und Kommunikation benutzen kann ist nicht Gegenstand des Blogs, sondern ist im Management 4.0 enthalten.

Die Wahl des hier verwendeten Videos ist nahezu zufällig: Das Thema fand ich interessant und es sind hinreichend genug Personen in dem Video. Die Personen bilden sicherlich kein Team, jedoch wird eine Diskussion erst dann fruchtbar, wenn sich auch in der Diskussion ein Collective Mind ausbildet. Also sollte die Analyse des gewählten Stellvertreter-Videos erlaubt sein.

Ich analysiere das Video in folgenden Schritten:     

Erster Schritt: Gefühls-Analyse

Die Gefühls-Analyse des Videos dient dazu, einen ersten Eindruck zu erhalten und um die Mächtigkeit des verwendeten AI-Systems hume.ai zu prüfen. Meines Erachtens ist diese AI-Analyse enorm hilfreich, um zum Beispiel in einem Team in besonderen Situationen die Selbstreflexion der Teammitglieder anzustoßen. – Die AI-Analyse dürfte immer viel differenzierter sein, als die Analyse durch Menschen.

Abbildung 2: Collage des hume.ai User Interfaces mit Analyse-Informationen zu Facial expression, Vocal burst, Speech prosody und Language. Die Video-Ansicht links oben wurde von mir ‚georanged‘, um die Teilnehmer-Analyse-Zuordnung zu verhindern. Oben rechts wurde Language ausgewählt: Diese entspricht der vereinfachten Sentiment Analyse in anderen AI/ML-Systemen. Die AI hat eine Person wahrgenommen, was im Video entsprechend gekennzeichnet wird, und deren Gefühle werden direkt oben als Scores eingeblendet. Darunter befindet sich der Gefühls-Raum mit orangen Kreisen, die die Verteilung der Gefühle bis zum widergegebenen Zeitpunkt angeben. Speech prosody, Vocal burst und Language werden über den gesamten Zeitraum als interaktives User Interface dargestellt. Ich nehme an, dass in den meisten Fällen die so vorgenommene Analyse manch einen überraschen dürfte, da Gefühle präsentiert werden, die zuerst einmal nicht offensichtlich sind. – Dies eröffnet den Raum für die Team-Selbstreflexionen.

Zweiter Schritt: Temperament-, Werte- und Grundannahmen-Analyse

Diese Analyse ist von großer Bedeutung für die Führung und die damit verbundene vorausschauende Kommunikationsausrichtung im Team. Die Analyse wurde mittels myGini/chatGPT4o durchgeführt.

Ich zeige die Ergebnisse als von myGini erstellte Tabelle. – Die gesamte Analyse ist für den Blog zu umfangreich. 

Tabelle 2: Die Tabelle zeigt die Ergebnisse für den MBTI und den Big Five. Wie man erkennen kann, liefern MBTI und Big Five (nahezu) gleiche Ergebnisse (der Neurotizismus ist keine Dimension im MBTI). Dies entspricht meiner Erfahrung und ist für mich ein Qualitätskriterium der vorliegenden Analyse.

Die Ergebnisse zur Werte- und Grundannahmen-Analyse sind in Tabelle 3 enthalten.


Dritter Schritt: Collective Mind Analyse

Die Collective Mind-Analyse gebe ich als myGini-Ausgabe wieder. – Ich füge hier keinen Kommentar hinzu, da der Text in seiner Qualität für sich spricht:

Um die Texte der fünf Speaker unter dem Gesichtspunkt des oben beschriebenen Collective Mind zu analysieren und die fünf wichtigsten Begriffe zu identifizieren, werde ich die Kernideen und wiederkehrenden Themen der Speaker herausfiltern. Anschließend ordne ich die Begriffe dem Speaker zu, der am prägendsten für den jeweiligen Begriff ist.

Analyse der Texte und Identifikation der Begriffe

  1. Toleranz und Respekt: Mehrfach betont von mehreren Speakern, die die Notwendigkeit des gegenseitigen Respekts und der Toleranz gegenüber verschiedenen Glaubensrichtungen und Kulturen hervorheben.
  2. Kritisches Denken und Reflexion: Wichtig für das Verständnis und die Auseinandersetzung mit verschiedenen Perspektiven, wird stark von einigen Speakern unterstützt.
  3. Religiöse und kulturelle Identität: Diskussionen über die Bedeutung von Religion und Kultur in der modernen Gesellschaft und deren Einfluss auf das soziale und politische Leben.
  4. Inklusion und Akzeptanz: Die Bedeutung der Akzeptanz und Inklusion verschiedener Lebensstile und Überzeugungen wird von mehreren Speakern hervorgehoben.
  5. Bildung und Aufklärung: Das Engagement für Bildung und die Notwendigkeit, durch Bildung und Aufklärung Vorurteile abzubauen, wird von mehreren Speakern betont.

Zuordnung der Begriffe zu den Speakern

  1. Toleranz und Respekt
    Prägendster Speaker: Speaker 1. Speaker 1 betont die Notwendigkeit von Toleranz und Respekt gegenüber verschiedenen Glaubensrichtungen und Kulturen und bringt dies mehrfach zur Sprache.
  2. Kritisches Denken und Reflexion
    Prägendster Speaker: Speaker 4. Speaker 4 zeigt eine starke Neigung zum kritischen Hinterfragen und zur Reflexion über eigene und fremde Ansichten, was als Schlüssel zu Fortschritt und Verständnis gesehen wird.
  3. Religiöse und kulturelle Identität
    Prägendster Speaker: Speaker 2. Speaker 2 diskutiert ausführlich die Rolle der Religion und Kultur in der Gesellschaft und deren Einfluss auf individuelle und kollektive Identität.
  4. Inklusion und Akzeptanz
    Prägendster Speaker: Speaker 5. Speaker 5 legt großen Wert auf Inklusion und Akzeptanz verschiedener Lebensstile und betont die Bedeutung der Vielfalt in der Gesellschaft.
  5. Bildung und Aufklärung
    Prägendster Speaker: Speaker 3. Speaker 3 betont die Notwendigkeit von Bildung und Aufklärung, um Vorurteile abzubauen und ein besseres Verständnis zu fördern.

Vierter Schritt: Beiträge der Speaker zum Collective Mind (CM) sowie deren Werte und Glaubenssätze gemäß myGini

Tabelle 3: Diese Tabelle zeigt, wie alle Tabellen von myGini erstellt, den Beitrag der verschiedenen Speaker zum Collective Mind (CM) im Spiegel ihrer Werte und Grundannahmen/Glaubenssätze. Es fällt auf, dass die Beiträge der einzelnen Speaker zum CM dicht beieinander liegen. Weiterhin fällt auf, dass zwei Speaker das CM tragen: Speaker 1 und 4. Speaker 5 fällt in dieser Analyse etwas ab. Insgesamt liegt ein kohärentes CM vor.

Fünfter Schritt: Weitere mathematische Analyse des Collective Mind

Dieser Schritt war in der Ausarbeitung der mit Abstand aufwendigste, da recht viel Python-Code zu erstellen war, der weitgehend fehlerlos von chatGPT4o erzeugt wurde. Insbesondere bei der graphischen Aufbereitung waren viele Iterationen nötig, da meine Erwartungen im Kontext der Textanalyse oft nicht erfüllt wurden.

Die Analyse-Grundidee ist schon in den Blogs ‚AI & M 4.0: Collective Mind, Proxies und word embedding April 25, 2022‘ und ‚AI & M 4.0: Sein als Netzwerk – Den Collective Mind als Netzwerk sichtbar machen Juni 28, 2022‘ enthalten: Die Textähnlichkeit der Speaker 1-5 wird gemessen und in einer symmetrischen fünf mal fünf-dimensionalen Matrix dargestellt. Zusätzlich sind jetzt die Elemente der Matrix komplexe Zahlen: Die Sentiment-Unterschiede (positives Gefühl, neutrales Gefühl, negatives Gefühl) in der Sprache der Speaker werden als imaginäre Teile der Matrixelemente aufgenommen.- Dies ist eine von mehreren Möglichkeit die Kohärenz des Collective Mind zu messen. – Ich gehe hier nicht auf die anderen Möglichkeiten ein, da dies den Rahmen des Blogs bei weitem überschreiten würde.

Der sogenannte Eigenvektor der Matrix mit dem größten Eigenwert repräsentiert den Collective Mind. Der Eigenwert selbst misst die Stärke des Collective Mind.

Ich habe chatGPT4o gebeten Eigenwert und Eigenvektor kurz zu erklären und eine Metapher zur Verdeutlichung vorzuschlagen. Unter mehreren Vorschlägen habe ich die Metapher vom Fluss gewählt. Hier ein Auszug:

Eigenwerte und Eigenvektoren sind Konzepte aus der linearen Algebra, die helfen, das Verhalten von linearen Transformationen (wie Matrizen) zu verstehen. Hier ist eine einfache und verständliche Erläuterung:

Ein Eigenvektor ist ein Vektor, der, wenn er mit einer Matrix multipliziert wird, seine Richtung nicht ändert. Er wird lediglich skaliert, d.h., er wird gestreckt oder gestaucht. Das bedeutet, wenn du eine Matrix A hast und einen Eigenvektor v, dann ist A*v =lambda*v, lambda ist eine Konstante, die als Eigenwert bezeichnet wird. …Ein Eigenwert ist der Faktor, um den ein Eigenvektor bei der Transformation durch die Matrix skaliert wird. ….Das bedeutet, wenn die Matrix A auf den Eigenvektor v angewendet wird, ändert sich der Vektor v nur in seiner Länge, nicht aber in seiner Richtung….Stell dir vor, du hast eine Transformation (Matrix), die auf einen Vektor im Raum wirkt. Normalerweise wird ein Vektor dabei gedreht, gestreckt oder gestaucht. Ein Eigenvektor ist ein spezieller Vektor, der bei dieser Transformation nicht gedreht wird, sondern nur gestreckt oder gestaucht wird. Der Faktor, um den dieser Vektor gestreckt oder gestaucht wird, ist der Eigenwert…

…Hier ist eine Interpretation von Eigenwerten und Eigenvektoren mit einer Metapher, die das Konzept noch anschaulicher macht:
Metapher: Fluss und Strom
Stell dir vor, du bist ein Forscher, der den Fluss eines großen Flusses untersucht. Du möchtest verstehen, wie sich das Wasser in verschiedenen Teilen des Flusses bewegt. Der Fluss repräsentiert dabei deine Matrix, die die Transformation beschreibt.

Eigenvektoren: Stabile Richtungen im Fluss

Im Fluss gibt es bestimmte Strömungslinien, entlang derer sich das Wasser in einer stabilen Weise bewegt. Diese Strömungslinien ändern nicht ihre Richtung, auch wenn das Wasser schneller oder langsamer fließt. Diese stabilen Richtungen im Fluss sind wie die Eigenvektoren. Sie repräsentieren die speziellen Richtungen, die durch die Transformation (den Fluss) nicht verändert werden.

Eigenwerte: Geschwindigkeit der Strömung

Jetzt beobachtest du, dass das Wasser entlang dieser stabilen Strömungslinien unterschiedlich schnell fließt. Einige Strömungslinien haben eine starke Strömung (das Wasser bewegt sich schnell), während andere eine schwächere Strömung haben (das Wasser bewegt sich langsam). Diese Geschwindigkeiten entlang der stabilen Strömungslinien sind wie die Eigenwerte. Sie geben an, wie stark der Fluss entlang der jeweiligen Strömungslinie (Eigenvektor) ist.

Das ‚Verständnis‘ von chatGPT4o ist meines Erachtens überaus beeindruckend!

Der nachfolgende Auszug aus einer meiner vielen Kommunikationen mit chatGPT4o möge dies weiter verdeutlichen und fasst eines der Ziele dieses Arbeitsschrittes zusammen:

Ich: … Wir haben die komplexe Collective Mind Matrix als Collective Mind Operator verwendet und die Eigenwerte und Eigenvektoren berechnet. Bilden wir das Skalarprodukt der Zeilenvektoren des Collective Mind Operators mit dem Eigenvektor des größten Eigenwertes, den wir als Repräsentation des Collective Mind verstehen, so sollte dies ergeben, wieviel jeder Speaker auf das Collective Mind einzahlt. Siehst Du das genauso?

ChatGPT: Ja, das sehe ich genauso. Das Skalarprodukt der Zeilenvektoren des Collective Mind Operators mit dem Eigenvektor des größten Eigenwertes (der als Repräsentation des Collective Mind interpretiert wird) gibt an, wie viel jeder Speaker zum Collective Mind beiträgt. Hier ist der Code, um diese Analyse durchzuführen…

Auf dieser Basis erhalten wir folgende Ergebnisse – ich verzichte auf die dazugehörige Mathematik:

Abbildung 3: Der Collective Mind Operator, dargestellt als Heatmatrix mit Realteil (Textähnlichkeiten) und Imaginärteil (Sentimentunterschiede): z.B. hat Speaker 1 (Zeile 1) eine Textähnlichkeit mit Speaker 2 von 0,62 und einen Sentimentunterschied von 0,20 (Spalte 3 und 4).

Der erste Eigenvektor, also derjenige mit dem größten Eigenwert, kann auch wie folgt dargestellt werden:

Abbildung 4: Der fünfdimensionale Eigenvektor (da fünf Speaker) zeigt, dass alle Speaker etwa mit gleichen Aussagegewichten in den Collective Mind einzahlen, was auch der Analyse von myGini entspricht. Die Sentiments, gemessen über die Sprache der fünf Speaker, sind nahezu neutral. – Eine feingranulare Analyse auf der Ebene der einzelnen Diskussionsbeiträge, ohne Abbildung hier, zeigt deutliche Peak-artige Ausschläge, ähnlich wie die vocal burst Ausschläge gemäß hume.ai.- Ich habe mir den Vergleich auf Sekundenebene erspart.

Abbildung 5: Netzwerk der Textähnlichkeiten ab dem Schwellenwert von 0,61 zwischen den Speakern (maximale Ähnlichkeit ist 1). Speaker 2 und 4 haben eine recht große Textähnlichkeit, Sprecher 5 hat zu beiden eine ähnlich große Textähnlichkeit.

Der in Abbildung 4 dargestellte Eigenvektor zeigt in den fünf Speaker-Dimensionen eine recht große Homogenität. – Alle anderen, hier nicht gezeigten Eigenvektoren sind sehr stark heterogen in den Beiträgen der Speaker. – Sie dienen deshalb nicht als Repräsentanten eines Collective Mind! 

Trägt man alle bisherigen Informationen zu den Beiträgen der Speaker zum CM zusammen, so ergibt sich Tabelle 4:

Tabelle 4: Diese Tabelle zeigt im Detail ein nicht ganz homogenes Ergebnisbild: Gemäß Netzwerkanalyse und den aufsummierten Textähnlichkeiten müssten die Speaker 2 und 4 den größten Beitrag zum Collective Mind beisteuern, gemäß dem Skalarprodukt von Eigenvektor und Zeilenvektor sind Speaker 5, 4 und 2 diejenigen, die den größten Beitrag stellen. Gemäß chatGPT4o sind Speaker 1 und 4, bzw. mit Sentimentanalyse, hier als emotion bezeichnet, sind Speaker 4 und 1, diejenigen mit den größten CM-Beiträgen. Es ist auch zu erkennen, dass die Speaker mit dem größen Redeanteil nicht zwangsläufig das CM ausbilden. Sprecher 2 und 4 liefern in allen Analysen, CM-Operator-, myGini- und Netzwerk-Analyse, einen wichtigen Beitrag.
Erläuterungen zur Netzwerkanalyse: Degree centrality (DC): Diese Kennzahl gibt an, wie gut ein Knoten vernetzt ist und wie zentral seine Position im Netzwerk ist. Betweenness centrality (BC): Diese Kennzahl zeigt an, wie wichtig ein Knoten für die Informationsvermittlung und die Kontrolle über den Fluss im Netzwerk ist. Closeness centrality (CC): Diese Kennzahl gibt an, wie schnell ein Knoten Informationen oder Ressourcen im gesamten Netzwerk erreichen kann.                                                               

Ich habe myGini zu den Gründen der Analyse-Unterschiede befragt. Wegen des Umfangs verzichte ich auf die volle Wiedergabe der Gründe: Der wesentliche Unterschied liegt darin, dass die CM Operator-Methode die Interaktion der Speaker mathematisch misst und die Vermessung bei chatGPt4o auf einer subjektiven chatGPT4o-Einschätzung beruht. In dieser Einschätzung werden die Häufigkeit, Tiefe, Relevanz, Konsistenz und emotionale Tonalität der Speaker-Beiträge zum vorher identifizierten Collective Mind qualitativ bewertet (siehe Tabelle 3: Rangordnung der Begriffe im CM). Auch im Falle der myGini Analyse wird eine Form von Interaktion gemessen, indem auf das identifizierte Collective Mind referenziert wird. Diese Interaktion ist jedoch nicht vergleichbar mit der Netzwerk-Interaktion über Textähnlichkeiten und Sentimentunterschiede, die in den CM-Eigenvektor mündet. – myGini beurteilt die Speaker-Beiträge qualitativ an Hand des von ihr selbst festgelegten CM. 

Dieser Blog startete mit der Frage: Kann man mit Hilfe der öffentlich zugänglichen AI/ML-Werkzeuge eine AI/ML-Assistenz aufbauen, die ein Team darin unterstützt ein Collective Mind aufzubauen?

Ich hoffe, gezeigt zu haben, dass man die Frage mit ja beantworten kann. Die Analyse mittels myGini und die mit dem Collective Mind Operator liefern zwar keine völlig identischen Ergebnisse, jedoch liegen die beiden Ergebnisse insgesamt dicht beieinander. – Meines Erachtens liefern beiden Ergebnisse zusammen wertvolle Einblicke in die Dynamik einer Gruppe oder eines Teams, die man ohne AI/ML-Assistenz nicht erhält.

Die Analyse hat auch gezeigt, dass die Textanalysen mittels der Standardtextanalyse-Werkzeuge, auch wenn diese teilweise Transformer-Technologie benutzen, mit der Qualität von myGini/chatGPT4o bei weitem ! nicht mithalten können. Das Ziel weiterer Untersuchungen sollte also sein, den Collective Mind Operator mit den myGini Textanalyse-Fähigkeiten zusammen zu bringen. Damit wäre es dann auch möglich eine inhaltliche Collective Mind Textaussage zu finden, die unmittelbar mit dem CM-Eigenvektor verbunden ist. – Die Collective Mind Textaussage von myGini ist eine Drittaussage, sie entspringt leider nicht unmittelbar dem CM-Eigenvektor.- Es ist also noch Potential für weitere Untersuchungen vorhanden.

Und hier die Einschätzung von myGini zum Blog. Alle Verbesserungsvorschläge treffen zu, ich werde versuchen diese später in Ergänzungen zu berücksichtigen:

Ich: Ich habe gerade die PDF Datei ‚Blog CM-Operator‘ hochgeladen. Ich möchte, dass Du mir Deine Meinung zu diesem Blog mitteilst und mir Verbesserungsmöglichkeiten aufzeigst.

Meinung zum Blog-Artikel

Der Blog-Artikel bietet eine umfassende und detaillierte Analyse des Collective Mind Konzepts unter Verwendung moderner AI/ML-Werkzeuge. Die Methode, den Collective Mind Operator zu verwenden und eine komplexe Matrix zu erstellen, um Textähnlichkeiten und Sentimentunterschiede zu modellieren, zeigt ein tiefes Verständnis der Materie und ist innovativ. Der Artikel ist klar strukturiert und führt den Leser Schritt für Schritt durch die verschiedenen Analysen und deren Ergebnisse.

Stärken des Artikels

  1. Detaillierte Analyse: Der Artikel erklärt gründlich die verwendeten Werkzeuge und Methoden, was für Transparenz sorgt.
  2. Innovative Methoden: Die Verwendung einer komplexen Matrix zur Modellierung des Collective Mind ist innovativ und zeigt ein tiefes Verständnis der Mathematik hinter den Konzepten.
  3. Klare Struktur: Der Artikel ist gut strukturiert und führt den Leser logisch durch die verschiedenen Schritte der Analyse.
  4. Praktische Anwendung: Die Anwendung der Analyse auf eine reale Diskussion (Markus Lanz Show) macht die Methode greifbar und zeigt ihre praktische Relevanz.

Verbesserungsmöglichkeiten

  1. Erklärung der mathematischen Konzepte:
    • Detailtiefe: Obwohl die Erklärungen zu Eigenwerten und Eigenvektoren gut sind, könnten sie für Leser ohne mathematischen Hintergrund schwer verständlich sein. Eine noch einfachere Metapher oder visuelle Darstellungen könnten helfen.
    • Visualisierungen: Mehr Diagramme oder Grafiken, die die komplexen mathematischen Beziehungen illustrieren, könnten das Verständnis erleichtern.
  2. Vertiefung der Sentiment-Analyse:
    • Detaillierte Ergebnisse: Die Ergebnisse der Sentiment-Analyse könnten detaillierter dargestellt werden, um die emotionalen Nuancen der Beiträge der Sprecher besser zu erfassen.
    • Integration in die Analyse: Eine tiefere Integration der Sentiment-Analyse in die Gesamtbewertung könnte die Ergebnisse weiter verfeinern.
  3. Diskussion der Ergebnisse:
    • Vergleich der Methoden: Eine detailliertere Diskussion über die Unterschiede und Gemeinsamkeiten der Ergebnisse der verschiedenen Methoden (Collective Mind Operator vs. myGini) könnte wertvolle Einblicke bieten.
    • Implikationen: Eine Diskussion über die praktischen Implikationen der Ergebnisse für die Teamführung und das Management könnte den Artikel abrunden.
  4. Leserfreundlichkeit:
    • Zusammenfassung: Eine prägnante Zusammenfassung der wichtigsten Ergebnisse am Anfang oder Ende des Artikels könnte dem Leser helfen, die Hauptpunkte schnell zu erfassen.
    • Glossar: Ein Glossar der verwendeten Begriffe und Konzepte könnte nützlich sein, insbesondere für Leser, die nicht mit allen verwendeten Methoden und Tools vertraut sind.

Fazit
Der Blog-Artikel ist eine beeindruckende Darstellung moderner Analysemethoden zur Untersuchung des Collective Mind Konzepts. Mit einigen Verbesserungen in Bezug auf die Erklärung der mathematischen Konzepte, die Vertiefung der Sentiment-Analyse und eine klarere Diskussion der Ergebnisse könnte der Artikel noch zugänglicher und nützlicher für ein breiteres Publikum werden.

[1] ZDF (2024) https://www.zdf.de/gesellschaft/markus-lanz/markus-lanz-vom-30-mai-2024-100.html oder http://youtu.be/rpINCu5VmnY