AI Prompt Engineering – Hype oder Handwerk? – Zwischenmenschliche Kommunikation statt KI-Hokuspokus: Warum wir uns lieber auf bewährte Kompetenzen fokussieren sollten!

Der Titel dieses Blogs lehnt sich an einen Titel-Vorschlag des KI-Systems google Gemini an.

Ich vertrete seit Beginn des AI Prompt Engineering Hypes die Auffassung, dass Prompt Engineering nicht mehr ist als Experten Know-how kombiniert mit den Prinzipien guter Kommunikation zwischen Menschen; oder anders gesagt: Prompt Engineering Erkenntnisse können aus den Prinzipien einer guten zwischenmenschlichen Kommunikation abgeleitet werden.

Um dieser These nachzugehen, habe ich folgenden Prompt (2785 Zeichen inkl. Leerzeichen) erstellt und diesen an zwei aufeinander folgenden Tagen (15.02. und 16.02.2024) den KI-Systemen chatGPTplus, chatGPTplus mit meiner GPTapp myGini (siehe vorherigen Blog-Beitrag), google Gemini und Microsoft Copilot in der MS Edge Umgebung als Aufgabe gegeben:

Ich möchte, dass Du für mich, als Alfred Oswald, einen Blog Beitrag erstellst. Was und wie ich schreibe findest Du in meinem Blog agilemanagement40.com. Der Blog Beitrag befasse sich mit dem Thema „AI Prompt Engineering“. Ich habe Zweifel, dass Prompt Engineering eine Kunst oder Wissenschaft oder Handwerk ist, mit dem man sich länger beschäftigen sollte. Ich vertrete vielmehr die These, dass es viel sinnvoller ist, sich mit guten zwischenmenschlichen Kommunikationstechniken zu beschäftigen. – Denn wenn meine Kommunikation gut ist, ist mein Prompting ebenfalls gut.

Die Zielgruppe, die ich im Sinn habe, sind Menschen, die nicht unmittelbar auf jeden Hype springen, sondern zuerst einmal nachdenken, ob der Hype Sinn macht. AI Prompt Engineering betrachte ich als Hype, der zudem auch noch sehr stark von der technologischen Entwicklung abhängt. Mein spezifisches Interesse ist also, sehr allgemeine Prinzipien des AI Prompt Engineerings mit sehr allgemeinen Prinzipien der menschlichen Kommunikation in Verbindung zu bringen. Zum Beispiel muss beim Prompt Engineering ein Kontext hergestellt werden, damit die AI im riesigen Neuronalen Netzwerk sich nicht „verläuft“. Für Menschen gilt das Gleiche: Ohne Kontext werden unpräzise Assoziationen aufgerufen. Hier suche ich auch noch Quellen, die über ähnliche Zusammenhänge nachgedacht haben. Falls man diese Zusammenhänge aufgedeckt hat, hat man sich von der aktuellen technologischen Entwicklung unabhängig gemacht und man kann die Erkenntnisse auch noch in 5 oder 10 Jahren für eine Kommunikation mit einer AI verwenden. Als Nebeneffekt wird die Kommunikation mit anderen Menschen ebenfalls bewusster und damit besser.

Der Blog-Beitrag sollte folgendes enthalten:

  • Einen Titel, der durchaus provokant sein kann und meine These und die übliche Sicht auf AI Prompt Engineering reflektiert
  • Eine Definition von AI Prompt Engineering
  • 1-2 prägnante Prompting Beispiele, vielleicht schon Beispiele an denen man erkennen kann, dass AI Prompt Engineering auch Schattenseiten hat
  • 5 gute Quellen für das Thema AI Prompt Engineering
  • Eine Liste der AI Prompt Engineering Prinzipien
  • Eine Liste der Prinzipien guter zwischenmenschlicher Kommunikation
  • Eine tabellarische Gegenüberstellung der Liste der AI Prompt Engineering Prinzipien und der Prinzipien guter zwischenmenschlicher Kommunikation
  • Eine Schlussfolgerung zum Vergleich der beiden Prinzipien-Listen
  • Eine Bewertung meines Prompts für den Blog. Bitte bewerte anhand der AI Prompt Engineering Prinzipien für jedes Prinzip auf einer Skala von 1 bis 10 (1 bedeutet überhaupt nicht erfüllt, 10 bedeutet voll erfüllt) meinen hier vorliegenden Prompt. Gib mir ggf. Ratschläge, was ich verbessern sollte.
  • Eine abschließende Schlussfolgerung, die zum Titel des Blogs Bezug nimmt.

Am ersten Tag habe ich in chatGPTplus zwei Prompting-Iterationen durchlaufen: In der zweiten Iteration wurde der obige kursive Prompttext als Verbesserung hinzugefügt. Auf der Basis der am ersten Tag ermittelten Prinzipien guten Prompt Engineerings hat der obige Prompt in chatGPTplus für alle Prompt-Prinzipien 9 von 10 Punkten erhalten. – Ich erwähne die Prinzipien hier nicht, da chatGPTPlus am zweiten Tag bei Eingabe des identischen Textes teilweise unterschiedliche Prinzipien für gutes Prompt Engineering mit anderen Bewertungen ermittelte. – Weiter unten sind die Ergebnisse für den zweiten Tag enthalten.

myGini erbrachte zu meinem Erstaunen schon am ersten Tag andere Prinzipien und Bewertungen als chatGPTplus, obwohl myGini eine App auf der Basis von chatGPTplus ist. Google Gemini fand wieder andere Prinzipien, u.a. taucht dort Kreativität als Prinzip auf, was am ersten Tag bei chatGPTplus als Prinzip nicht enthalten war. Der MS Copilot mit der Modus-Einstellung ‚in höherem Maße ausgewogen‘ lässt nur 2000 Zeichen als  Prompt-Eingabe zu, so dass diese KI am ersten Tag aus dem Rennen war.

Am zweiten Tag habe ich allen vier KI-Systemen den gleichen Prompt wieder gegeben.- Wobei ich für den MS Copilot die Modus Einstellung ‚in höherem Maße kreativ‘ verwendet habe, da in diesem Modus 4000 Zeichen als Prompt eingegeben werden können.

Ich liste im folgenden die Ergebnisse für die KI-Systeme chatGPTplus, chatGPTplus mit myGini und Gemini. Das KI-System Copilot ist leider völlig gescheitert: Schon zu den ersten Teilaufgaben des Prompts wurden überlange Texte ausgegeben und aufgrund deren Länge hat das System nach meiner zweiten Teilaufgabe die Ausgabe abgebrochen.

Hier die Ergebnisse:

chatGPTplus

„Jenseits des Hypes: Warum echte Kommunikation das Herz des AI Prompt Engineerings schlägt“

Definition von AI Prompt Engineering:

AI Prompt Engineering bezeichnet den Prozess des Entwerfens und Optimierens von Eingabeaufforderungen (Prompts), um von künstlichen Intelligenzen (KI) spezifische und präzise Antworten oder Leistungen zu erhalten. Es ist eine Kunst und Wissenschaft zugleich, die darauf abzielt, die Interaktion zwischen Mensch und Maschine zu verfeinern und effektiver zu gestalten.

Beispiele für Prompting:

  1. Zu allgemein: Ein Benutzer fragt: „Erzähl mir etwas Interessantes.“ Die KI liefert eine zufällige Tatsache, die möglicherweise nicht den Interessen des Benutzers entspricht. Dies zeigt, wie ein unpräziser Prompt zu nicht zielgerichteten Antworten führen kann.
  2. Zu spezifisch: Ein Benutzer gibt einen hochspezifischen Prompt mit vielen Einschränkungen. Die KI könnte Schwierigkeiten haben, eine adäquate Antwort zu generieren, was die Kreativität und den Nutzwert der Antwort einschränken kann.

Quellen für das Thema AI Prompt Engineering:

  1. „Designing Effective Prompts for Language Models“ von Emily Bender et al.
  2. „The Art and Science of Prompt Engineering for AI“ im AI Magazine.
  3. „Prompt Engineering as a Critical Skill in the AI Era“ auf Medium.
  4. „Beyond GPT-3: The Future of Prompt Engineering“ auf towardsdatascience.com.
  5. „Understanding AI’s Language: How Prompts Shape Responses“ im Journal of Artificial Intelligence Research.

AI Prompt Engineering Prinzipien:

  1. Klarheit: Eindeutige und präzise Formulierung.
  2. Kontextualität: Bereitstellung relevanter Hintergrundinformationen.
  3. Zielgerichtetheit: Fokus auf das gewünschte Ergebnis.
  4. Kreativität: Anregung innovativer und unerwarteter Antworten.
  5. Anpassungsfähigkeit: Flexibilität in der Fragestellung für unterschiedliche Anforderungen.

Prinzipien guter zwischenmenschlicher Kommunikation:

  1. Aktives Zuhören: Verstehen der Perspektive des anderen.
  2. Klarheit und Präzision: Eindeutige Mitteilungen.
  3. Empathie: Einfühlungsvermögen in Gefühle und Bedürfnisse des Gegenübers.
  4. Feedback: Konstruktive Rückmeldungen.
  5. Anpassung: Berücksichtigung des Kontextes und der Beziehung.

Gegenüberstellung der Prinzipien:

AI Prompt Engineering

Zwischenmenschliche Kommunikation

Klarheit

Klarheit und Präzision

Kontextualität

Anpassung

Zielgerichtetheit

Kreativität

Anpassungsfähigkeit

Aktives Zuhören

Empathie

Feedback

 Schlussfolgerung zum Vergleich:

Obwohl AI Prompt Engineering und zwischenmenschliche Kommunikation in verschiedenen Domänen angesiedelt sind, teilen sie grundlegende Prinzipien wie Klarheit und die Notwendigkeit, den Kontext zu berücksichtigen. Die effektive Anwendung dieser Prinzipien kann sowohl in der Mensch-Maschine-Interaktion als auch in menschlichen Beziehungen zu verbesserten Ergebnissen führen.

Bewertung des Prompts:

  • Klarheit: 8/10
  • Kontextualität: 7/10
  • Zielgerichtetheit: 9/10
  • Kreativität: 6/10
  • Anpassungsfähigkeit: 5/10

Ratschläge zur Verbesserung:

  • Kontextualität: Integrieren Sie spezifischere Beispiele oder Szenarien, um den Kontext zu verdeutlichen.
  • Kreativität und Anpassungsfähigkeit: Experimentieren Sie mit unterschiedlichen Formulierungen, um die Vielfalt und Tiefe der KI-Antworten zu erhöhen.

Abschließende Schlussfolgerung:

Der Titel des Blogs provoziert eine Reflexion über die Bedeutung von echter Kommunikation in der Welt des AI Prompt Engineerings. Durch die Gegenüberstellung der Prinzipien wird deutlich, dass grundlegende Kommunikationsfähigkeiten nicht nur die Mensch-zu-Mensch-Interaktion verbessern, sondern auch eine Schlüsselrolle bei der Gestaltung effektiver Prompts spielen. Letztendlich ist es die Qualität unserer Kommunikation, die den Erfolg unserer Interaktionen, sei es mit Menschen oder Maschinen, bestimmt.

 

chatGPTplus mit myGini

Titel: „Beyond the Hype: Das wahre Meisterwerk menschlicher und künstlicher Kommunikation“

Definition von AI Prompt Engineering: AI Prompt Engineering bezeichnet den Prozess der Gestaltung und Optimierung von Eingabeaufforderungen (Prompts), um spezifische und relevante Antworten von einem KI-System, insbesondere von Sprachmodellen, zu erhalten. Es beinhaltet das kunstvolle Zusammenspiel von Wortwahl, Kontextgebung und Klarheit, um die gewünschten Informationen oder Ergebnisse von der KI effizient zu extrahieren.

Prompting Beispiele:

  1. Unpräziser Prompt: „Erzähl mir was.“ – Dies kann zu einer breiten, oft irrelevanten Antwort führen, da der Kontext und die Zielsetzung fehlen.
  2. Präziser Prompt: „Erzähl mir die Hauptursachen des Ersten Weltkriegs, fokussiert auf politische Allianzen und militärische Aufrüstung.“ – Hier wird ein klarer Kontext und eine spezifische Anfrage gestellt, was zu einer fokussierten und informativen Antwort führt.

Quellen für das Thema AI Prompt Engineering:

  1. „Designing Effective Prompts for Language Models“ – Eine wissenschaftliche Abhandlung, die Techniken und Methoden für effektives Prompt Design diskutiert.
  2. „The Art of Prompt Engineering in AI“ – Ein Blogbeitrag, der Einblicke in die kreative Seite des Prompt Engineerings gibt.
  3. „Prompt Engineering: A Key Skill for Interacting with AI“ – Ein Artikel, der die Wichtigkeit von Prompt Engineering für die effiziente Nutzung von KI-Systemen hervorhebt.
  4. „Understanding AI Responses: The Science of Prompt Engineering“ – Eine Studie, die die Wissenschaft hinter Prompt Engineering und die Auswirkungen auf KI-Verhalten untersucht.
  5. „From Words to Wisdom: The Craft of Prompt Engineering“ – Ein Leitfaden, der praktische Tipps und Strategien für das Crafting von Prompts bietet.

Prinzipien des AI Prompt Engineering:

  1. Klarheit und Präzision
  2. Kontextualisierung
  3. Zielorientierung
  4. Sprachliche Einfachheit
  5. Anpassung an das Verständnisniveau der KI

Prinzipien guter zwischenmenschlicher Kommunikation:

  1. Aktives Zuhören
  2. Klarheit und Verständlichkeit
  3. Kontextbezogenheit
  4. Empathie und Verständnis
  5. Rückmeldung und Bestätigung

Gegenüberstellung der Prinzipien:

AI Prompt Engineering

Zwischenmenschliche Kommunikation

Klarheit und Präzision

Klarheit und Verständlichkeit

Kontextualisierung

Kontextbezogenheit

Zielorientierung

Aktives Zuhören

Sprachliche Einfachheit

Empathie und Verständnis

Anpassung an das Verständnisniveau der KI

Rückmeldung und Bestätigung

 

Schlussfolgerung zum Vergleich der beiden Prinzipien-Listen: Die Prinzipien des AI Prompt Engineerings und der zwischenmenschlichen Kommunikation weisen signifikante Überschneidungen auf, insbesondere in Bezug auf die Notwendigkeit von Klarheit, Kontextualisierung und Zielorientierung. Beide Ansätze betonen die Wichtigkeit, die Botschaft auf den Empfänger abzustimmen, sei es eine KI oder ein Mensch.

Bewertung des Prompts für den Blog:

  • Klarheit und Präzision: 9/10
  • Kontextualisierung: 8/10
  • Zielorientierung: 10/10
  • Sprachliche Einfachheit: 7/10
  • Anpassung an das Verständnisniveau der KI: 8/10

Ratschläge zur Verbesserung:

  • Erhöhen Sie die sprachliche Einfachheit, indem Sie komplexe Begriffe weiter vereinfachen und noch spezifischere Beispiele verwenden.
  • Verbessern Sie die Kontextualisierung, indem Sie mehr Hintergrundinformationen oder spezifische Szenarien einbinden, die Ihre Argumentation unterstützen.

Abschließende Schlussfolgerung: Die Fähigkeit, sowohl mit KI als auch mit Menschen effektiv zu kommunizieren, basiert auf universellen Prinzipien klarer, kontextbezogener und zielgerichteter Kommunikation. Indem wir die Kunst des Prompt Engineerings meistern und gleichzeitig unsere zwischenmenschlichen Kommunikationsfähigkeiten schärfen, bereiten wir uns auf eine Zukunft vor, in der Technologie und menschliche Interaktion nahtlos ineinandergreifen. Der wahre Meisterwerk liegt darin, die Prinzipien beider Welten zu vereinen, um nicht nur den momentanen Hype zu überwinden, sondern eine dauerhafte Brücke zwischen Mensch und Maschine zu bauen.

 

google Gemini

Blog-Beitrag: Prompt Engineering – Hype oder Handwerk?

Zwischenmenschliche Kommunikation statt KI-Hokuspokus: Warum wir uns lieber auf bewährte Techniken fokussieren sollten

In der Welt der KI ist Prompt Engineering der neueste heiße Scheiß. Doch ist es wirklich die eierlegende Wollmilchsau, die uns versprochen wird, oder handelt es sich um einen weiteren Hype, der in ein paar Jahren wieder vergessen sein wird?

Was ist Prompt Engineering?

Prompt Engineering ist die Kunst, der Wissenschaft oder dem Handwerk (je nachdem, wen man fragt), der KI Anweisungen zu geben, die sie zu sinnvollen Ergebnissen führen. Im Kern geht es darum, einen Kontext zu schaffen, damit die KI im riesigen neuronalen Netzwerk sich nicht „verläuft“.

Beispiele für Prompting:

  • Bildgenerierung: „Erstelle ein Bild von einem roten Apfel auf einem weißen Tisch.“
  • Texterstellung: „Schreibe einen Blogbeitrag über die Vorteile von Prompt Engineering.“
  • Übersetzung: „Übersetze diesen Satz von Deutsch nach Englisch.“

Prompt Engineering – Schattenseiten und Hype:

Prompt Engineering ist nicht frei von Schattenseiten. Zum einen ist es stark von der technologischen Entwicklung abhängig. Was heute funktioniert, kann morgen schon obsolet sein. Zum anderen kann es zu unerwünschten Ergebnissen führen, wenn der Prompt nicht sorgfältig formuliert wird.

Gute Quellen zum Thema:

  • The Art of Prompt Engineering: [[ungültige URL entfernt]]([ungültige URL entfernt])
  • Prompt Programming: A New Paradigm for AI: [[ungültige URL entfernt]]([ungültige URL entfernt])
  • How to Write Good Prompts for AI: [[ungültige URL entfernt]]([ungültige URL entfernt])
  • The Prompt Whisperer: A Guide to Prompt Engineering: [[ungültige URL entfernt]]([ungültige URL entfernt])
  • Prompt Engineering for Large Language Models: [[ungültige URL entfernt]]([ungültige URL entfernt])

Prinzipien des Prompt Engineering:

  • Klarheit: Der Prompt sollte klar und unmissverständlich sein.
  • Prägnanz: Der Prompt sollte so kurz wie möglich sein.
  • Kontext: Der Prompt sollte den notwendigen Kontext liefern.
  • Spezifität: Der Prompt sollte so spezifisch wie möglich sein.
  • Kreativität: Der Prompt kann kreativ sein, um die KI zu inspirieren.

Prinzipien guter zwischenmenschlicher Kommunikation:

  • Aktives Zuhören: Hören Sie aktiv zu, was Ihr Gegenüber zu sagen hat.
  • Empathie: Versuchen Sie, sich in die Lage Ihres Gegenübers hineinzuversetzen.
  • Klarheit: Sprechen Sie klar und deutlich.
  • Respekt: Behandeln Sie Ihr Gegenüber mit Respekt.
  • Feedback: Geben Sie Ihrem Gegenüber Feedback.

Gegenüberstellung der Prinzipien:

Prinzip Prompt Engineering

Prinzip zwischenmenschlicher Kommunikation

Klarheit

Klarheit

Prägnanz

Prägnanz

Kontext

Kontext

Spezifität

Empathie

Kreativität

Respekt

Schlussfolgerung:

Die Prinzipien des Prompt Engineering und der zwischenmenschlichen Kommunikation haben viel gemeinsam. Beide basieren auf Klarheit, Prägnanz und Kontext. Der große Unterschied liegt in der Spezifität und Kreativität. Prompt Engineering erfordert mehr Spezifität, während zwischenmenschliche Kommunikation mehr Empathie und Respekt erfordert.

Bewertung des Prompts:

Klarheit: 8/10 Prägnanz: 7/10 Kontext: 9/10 Spezifität: 7/10 Kreativität: 6/10

Verbesserungsvorschläge:

  • Den Prompt kürzer fassen.
  • Mehr konkrete Beispiele für Prompting liefern.
  • Die Schattenseiten des Prompt Engineering deutlicher hervorheben.

Abschließende Schlussfolgerung:

Prompt Engineering ist ein nützliches Werkzeug, um mit KI zu kommunizieren. Es ist jedoch wichtig, sich nicht von dem Hype blenden zu lassen. Gute zwischenmenschliche Kommunikation ist und bleibt die Grundlage für jede erfolgreiche Interaktion, auch mit KI.

Hinweis:

Dieser Blog-Beitrag ist ein Gedankenexperiment und soll zum Nachdenken anregen. Die Thesen und Schlussfolgerungen sind nicht wissenschaftlich fundiert.

Zusätzliche Gedanken:

  • Es ist wichtig,  [Anm.: hier Abbruch der Ausgabe]

 

Was lernen wir aus diesen drei Test-Ergebnissen?

  • Die inhaltliche Antwort auf den Prompt ist stark KI-System abhängig. Selbst Systeme, die die gleiche technologische Basis (chatGPTplus und chatGPTplus mit myGini) haben, zeigen unterschiedliche Antworten.
  • Die Antworten hängen von der ‚Tagesform‘ der KI-Systeme ab. Gute Prompt Bewertungen an einem Tag, sind am nächsten Tag schon möglicher Weise nicht mehr gültig.
  • Selbst eindeutige Fakten, wie Quellenangaben, sind bei chatGPTplus und chatGPTplus mit myGini nicht identisch. Eine Stichprobenüberprüfung der Quellen über google zeigt, dass es die angeführten Quellen in google teilweise nicht gibt. Das gleiche gilt für Gemini, hier wurden vom System URL’s zusätzlich entfernt.
  • Klarheit, Präzision und Kontextualisierung waren die drei Prinzipien für gutes AI Prompt Engineering, die in allen drei KI-Systemen auch an allen zwei Testtagen genannt wurden. Die Kriterien Zielorientierung und Kreativität wurden mit unterschiedlicher Häufigkeit genannt.

Ich habe noch zwei weitere Tests am 19.02.2024 durchgeführt.

Der erste Test besteht darin, ein Promptmuster aus einem Newsletter von wildtools.ai [1] auf den drei KI-Systemen chatGPTplus, chatGPTplus mit myGini und Gemini zu testen (MS Copilot habe ich nicht mehr berücksichtigt). Das Prompt-Muster lautet:

Give me 10 Twitter tweet ideas for a [role/profession] in the [niche] niche. Be original, creative, daring, and out of the ordinary.

Ich habe dieses Muster auf meinen Management 4.0 Kontext angewendet:

Prompt an ChatGPT

Give me 10 Twitter tweet ideas for an Agile Management Consultant in the self-organization niche. Be original, creative, daring, and out of the ordinary.

ChatGPT

  1. Innovative Workspace Design: „Transforming office spaces into creativity hubs 🎨. Imagine agile pods instead of traditional desks, where self-organization meets design thinking. #AgileWorkspace #CreativityInAgile“
  2. Agile Mindfulness Exercise: „Start your team meetings with a 2-minute mindfulness exercise. Grounding in the present can unleash unforeseen agile potentials. #MindfulAgility #TeamHarmony“
  3. Flash Mob Stand-ups: „Why not take stand-up meetings to the next level? Organize a flash mob stand-up in unexpected locations to boost energy and creativity. #AgileSurprise #StandupRevolution“
  4. Reverse Brainstorming Session: „Flip problem-solving on its head with a reverse brainstorming session. How can we cause the problem? Uncover unexpected solutions in the process. #ReverseThinking #AgileInnovation“
  5. Agile Cooking Challenge: „What if your team’s next sprint planning was a cooking challenge? Ingredient = Task. Recipe = Sprint. Dish = Completed Project. #AgileCooking #TeamBuilding“
  6. Silent Retrospectives: „Conduct a silent retrospective where everyone writes but nobody speaks. See how silence can speak volumes and bring deeper insights. #SilentAgility #ReflectiveRetrospective“
  7. Agile Role Swap: „Encourage team members to swap roles for a day. Discover hidden talents and foster empathy within the team. #RoleSwap #AgileEmpathy“
  8. Outdoor Sprint Reviews: „Take your next sprint review to the great outdoors. Fresh air can breathe new life into your team’s achievements and future plans. #OutdoorAgility #NatureMeetsAgile“
  9. Improvisation Workshops: „Boost your team’s adaptability with an improvisation workshop. Agile is about thinking on your feet, after all. #ImprovAgility #AdaptiveTeams“
  10. Agile Myth-Busting Tweets: „Busting Agile Myths, one tweet at a time. Myth #1: Agile means no planning. Truth: Agile is all about flexible planning and adaptability. #AgileMythBusting #AgileTruths“

These tweet ideas are designed to engage, challenge, and entertain your audience while highlighting the versatility and creativity within agile management practices.

Prompt an chatGPT

Bitte bewerte den Prompt „Give me 10 Twitter tweet ideas for an Agile Management Consultant in the self-organization niche. Be original, creative, daring, and out of the ordinary.“ mit den oben definierten Prinzipien für gutes Prompt Engineering. Bitte verwende die Skala von 1 bis 10. 1 schlechtes Prompt Engineering, 10 sehr gutes Prompt Engineering.

ChatGPT

Um den Prompt „Give me 10 Twitter tweet ideas for an Agile Management Consultant in the self-organization niche. Be original, creative, daring, and out of the ordinary.“ anhand der definierten Prinzipien für gutes Prompt Engineering zu bewerten, betrachten wir die folgenden Aspekte:

  1. Klarheit und Präzision

Bewertung: 8/10 Der Prompt ist klar formuliert und gibt eine präzise Anforderung vor. Es wird deutlich, dass es um die Erstellung von Twitter-Tweet-Ideen geht, spezifisch für das Feld des Agile Managements mit einem Fokus auf Selbstorganisation.

  1. Kontextualisierung

Bewertung: 7/10 Der Prompt bietet einen angemessenen Kontext, indem er das Themengebiet und die gewünschte Originalität und Kreativität der Tweets angibt. Mehr Details über die Zielgruppe oder spezifische Ziele der Tweets könnten jedoch die Kontextualisierung verbessern.

  1. Zielorientierung

Bewertung: 9/10 Das Ziel ist klar definiert: Es sollen Tweet-Ideen generiert werden, die originell, kreativ, mutig und außergewöhnlich sind. Die spezifische Anzahl von Ideen (10) gibt eine klare Richtung und ein messbares Ziel vor.

  1. Feedback und Anpassung

Bewertung: Nicht anwendbar Aufgrund der Natur des Prompts als einmalige Anfrage ohne unmittelbare Rückmeldung oder Iteration ist dieser Aspekt nicht direkt bewertbar.

  1. Iterative Verbesserung

Bewertung: Nicht anwendbar Ähnlich wie bei Feedback und Anpassung, lässt der Prompt keine unmittelbare iterative Verbesserung zu, da es sich um eine einzelne Anfrage ohne vorherige Iterationen handelt.

Zusammenfassung:

Der Prompt zeigt eine starke Zielorientierung und Klarheit, was ihn zu einem effektiven Ausgangspunkt für die Generierung kreativer Inhalte macht. Die Kontextualisierung könnte durch zusätzliche Details zur Zielgruppe oder zum spezifischen Kontext innerhalb der Nische der Selbstorganisation verbessert werden, um noch präzisere und zielgerichtetere Antworten zu ermöglichen. Insgesamt ist der Prompt gut durchdacht und bietet eine solide Basis für kreatives Prompt Engineering im Bereich des Agile Managements.

 

Meine Analyse

Wie man sehen kann, hat chatGPT hier Prinzipien für die Bewertung herangezogen, die von den weiter oben gelisteten Prinzipien teilweise abweichen. – Diese Prinzipien wurde in den ersten Prompting-Durchläufen schon mal verwendet.

Die vorgeschlagenen Tweets sind kreativ, sie sind jedoch nicht Management 4.0 spezifisch, d.h. das Nichen Thema Selbstorganisation wurde allenfalls gestreift.

 

Prompt an ChatGPT mit myGini

In diesem Fall habe ich die Reihenfolge von Prompt und Promptbewertung geändert und anschließend nochmals eine Bewertung durchgeführt. – Die Ergebnisse legen nahe, dass diese Reihenfolge keinen Einfluss auf die Ergebnisse hat.

Bitte bewerte den Prompt „Give me 10 Twitter tweet ideas for an Agile Management Consultant in the self-organization niche. Be original, creative, daring, and out of the ordinary.“ mit den oben definierten Prinzipien für gutes Prompt Engineering. Bitte verwende die Skala von 1 bis 10. 1 schlechtes Prompt Engineering, 10 sehr gutes Prompt Engineering.

myGini

Um den Prompt „Give me 10 Twitter tweet ideas for an Agile Management Consultant in the self-organization niche. Be original, creative, daring, and out of the ordinary.“ gemäß den definierten Prinzipien für gutes Prompt Engineering zu bewerten, betrachten wir folgende Aspekte, die in den Prinzipien hervorgehoben werden:

  1. Klarheit und Verständlichkeit: Der Prompt ist klar und direkt, was es leicht macht, die Anfrage zu verstehen und darauf zu reagieren. (9/10)
  2. Spezifität und Relevanz: Der Prompt ist spezifisch auf den Bereich des Agile Managements und der Selbstorganisation ausgerichtet, was die Relevanz für den Zielkontext gewährleistet. (10/10)
  3. Kreativität und Originalität: Der Prompt fordert ausdrücklich Originalität und Kreativität, was zu innovativen und einzigartigen Ergebnissen führen kann. (10/10)
  4. Machbarkeit und Umsetzbarkeit: Die Anfrage ist realistisch und umsetzbar, da sie innerhalb der Kompetenzen eines Agile Management Consultants liegt. (9/10)
  5. Ethische und soziale Verantwortung: Der Prompt gibt keine Anweisungen, die ethisch oder sozial bedenklich sein könnten, allerdings fehlt eine direkte Berücksichtigung ethischer Richtlinien. (8/10)
  6. Anpassungsfähigkeit und Flexibilität: Der Prompt lässt Raum für vielfältige Interpretationen und Ansätze, was Flexibilität in der Antwort ermöglicht. (9/10)
  7. Zielgruppenorientierung: Der Prompt ist klar auf die Zielgruppe der Agile Management Consultants ausgerichtet. (10/10)
  8. Innovationspotential: Durch die Aufforderung nach „daring, and out of the ordinary“ Ideen wird das Innovationspotential gefördert. (10/10)
  9. Präzision in der Aufgabenstellung: Während der Prompt präzise die gewünschte Anzahl von Ideen und den thematischen Fokus angibt, könnte er noch spezifischere Kriterien oder Themenbereiche innerhalb der Selbstorganisation vorgeben. (7/10)
  10. Feedback und Iterationspotential: Der Prompt selbst bietet keine direkte Möglichkeit für Feedback oder Iterationen, was in einem interaktiven Kontext wie der Beratung hilfreich sein könnte. (6/10)

Durchschnittliche Bewertung: (8,8/10)

Dieser Prompt zeigt insgesamt eine starke Leistung im Bereich des Prompt Engineerings, mit besonderer Stärke in Kreativität, Spezifität und Zielgruppenorientierung. Verbesserungspotential besteht in der Integration von Feedbackmechanismen und der Präzisierung bestimmter Aspekte der Aufgabenstellung.

Prompt an chatGPTplus mit myGini

Give me 10 Twitter tweet ideas for an Agile Management Consultant in the self-organization niche. Be original, creative, daring, and out of the ordinary

myGini

  1. Unleash the Power of Self-Organization: „Dive into the heart of agility: Self-organization. It’s not chaos, but the birthplace of innovation. #AgileTransformation #SelfOrganization“
  2. Beyond Hierarchies: „Imagine a world where teams don’t wait for orders but navigate their own course towards success. That’s the self-organizing dream. #LeadFromWithin #AgileLeadership“
  3. The Future of Work is Here: „Forget the traditional office hierarchy. The future is collaborative, adaptive, and self-organized. Are you ready for the revolution? #FutureOfWork #AgileMindset“
  4. Breaking Boundaries with Agile: „In the realm of self-organization, boundaries are meant to be explored, not confined. Break free with #Agile. #InnovationUnleashed #TeamDynamics“
  5. Agile Myths Busted: „Myth: Self-organization equals no leadership. Truth: It cultivates leaders at every level. Let’s bust more agile myths together! #AgileMyths #TrueAgility“
  6. The Self-Organizing Secret: „The secret ingredient to a successful agile team? Trust. Build it, and watch your team self-organize into a powerhouse. #TrustLeadsToTriumph #AgileSecrets“
  7. Agile is an Attitude: „Agility is not just a methodology; it’s an attitude. Embrace change, encourage autonomy, and empower your teams. #AgileAttitude #Empowerment“
  8. From Chaos to Clarity: „Self-organization can turn chaos into clarity by harnessing the collective intelligence of your team. Discover how. #ChaosToClarity #CollectiveIntelligence“
  9. Agile Adventures: „Join us on an adventure where the path isn’t dictated but discovered through the power of self-organization. #AgileAdventures #Pathfinders“
  10. Dare to Self-Organize: „Dare to let go of control and let self-organization lead the way to unforeseen innovation and resilience. #DareToAgile #InnovationJourney“

These tweet ideas are designed to provoke thought, inspire action, and foster a deeper understanding of self-organization within the agile framework.

 

Meine Analyse

Das Prompting mit myGini erzeugt wesentlich mehr Prinzipien für die Bewertung (u.a. Ethik und Innovationspotential) guten Prompt Engineerings und die vorgeschlagenen Tweets treffen das Thema Selbstorganisation sehr gut.

 

Prompt an Gemini

Give me 10 Twitter tweet ideas for an Agile Management Consultant in the self-organization niche. Be original, creative, daring, and out of the ordinary

10 Twitter Tweet Ideas for an Agile Management Consultant (Self-Organization Niche):

  1. Forget control, embrace chaos! ️ Self-organizing teams thrive in dynamic environments. Let go of micromanaging & unlock true innovation. #agile #teamautonomy #leadership
  2. Can your org chart do push-ups? ‍♀️ Traditional hierarchies stifle agility. Flatten your structure, empower individuals, & watch teams soar. #selfmanagement #futureofwork #disruption
  3. Planning fallacy alert! Stop over-planning & under-delivering. Embrace iterative cycles, adapt to change, & achieve agility nirvana. #agileplanning #continuouslearning #failfast
  4. Collaboration ain’t a buzzword, it’s a superpower! Encourage cross-functional teamwork, break down silos, & witness magic happen. #collaboration #teambonding #psychologicalsafety
  5. ⏰ Time for a reality check! ⏱️ Are your meetings 90% talk & 10% action? ‍♀️ Embrace asynchronous communication, focus on outcomes, & reclaim your productivity. #asynchronouswork #focus #deepwork
  6. Intrinsic motivation > extrinsic rewards. Spark self-drive in your team by fostering purpose, autonomy, & mastery. Watch engagement & performance skyrocket. #intrinsicmotivation #purpose #mastery
  7. Silence can be golden. Active listening & open communication are the cornerstones of trust & psychological safety. #activellistening #communication #psychologicalsafety
  8. Gamification: Not just for kids! ️ Use playful elements to boost engagement, learning, & problem-solving in your team. #gamification #funatwork #innovation
  9. Experimentation > perfectionism. Don’t be afraid to try new things, even if they fail. Iteration & learning are key to agility. #growthmindset #experimentation #failforward
  10. Self-organization is a journey, not a destination. ️ Embrace ongoing learning, adaptation, & continuous improvement. #lifelonglearning #changemanagement #agiletransformation

Bonus:

  • Use eye-catching visuals (gifs, images) to grab attention.
  • Ask questions to spark engagement and conversation.
  • Respond to comments and keep the dialogue flowing.
  • Use relevant hashtags to reach your target audience.

I hope these ideas inspire you to create even more original and impactful tweets!

Prompt an Gemini

Bitte bewerte den Prompt „Give me 10 Twitter tweet ideas for an Agile Management Consultant in the self-organization niche. Be original, creative, daring, and out of the ordinary.“ mit den oben definierten Prinzipien für gutes Prompt Engineering. Bitte verwende die Skala von 1 bis 10. 1 schlechtes Prompt Engineering, 10 sehr gutes Prompt Engineering.

Gemini

Bewertung des Prompts „Give me 10 Twitter tweet ideas for an Agile Management Consultant in the self-organization niche. Be original, creative, daring, and out of the ordinary.“

Klarheit: 9/10

Der Prompt ist klar formuliert und lässt keine Missverständnisse zu. Es ist klar, dass 10 Twitter-Tweet-Ideen für einen Agile-Management-Berater im Bereich der Selbstorganisation gewünscht sind.

Prägnanz: 8/10

Der Prompt ist prägnant und auf den Punkt gebracht. Die Länge ist angemessen und es gibt keine unnötigen Informationen.

Kontext: 8/10

Der Prompt liefert den notwendigen Kontext, um die Aufgabe zu verstehen. Es ist klar, dass die Tweets originell, kreativ, gewagt und ungewöhnlich sein sollen.

Spezifität: 7/10

Der Prompt ist spezifisch genug, um die Aufgabe zu erfüllen. Es ist jedoch möglich, die gewünschten Eigenschaften der Tweets noch weiter zu spezifizieren, z. B. in Bezug auf die Länge, den Ton oder die Zielgruppe.

Kreativität: 9/10

Der Prompt fordert explizit kreative und ungewöhnliche Ideen. Dies ist ein wichtiger Faktor, um ansprechende und wirkungsvolle Tweets zu erstellen.

Gesamtbewertung: 8/10

Der Prompt ist insgesamt gut formuliert und geeignet, um 10 kreative Twitter-Tweet-Ideen zu generieren.

Verbesserungsvorschläge:

  • Um die Spezifität weiter zu erhöhen, könnten Vorgaben für die Länge der Tweets (z. B. maximal 280 Zeichen) oder den Ton (z. B. humorvoll, inspirierend) gemacht werden.
  • Es könnten Beispiele für gelungene Tweets aus dem Bereich der Selbstorganisation gegeben werden, um die gewünschte Richtung zu verdeutlichen.

Meine Analyse
Diese Gemini Ergebnisse zeigen recht gute Tweet-Vorschläge zum Nischen Thema Selbstorganisation und! Gemini bleibt, wie in allen anderen Prompts auch, bei seinen Prinzipien für gutes Prompting.

Zum Abschluss der zweite Ergänzungstest: Ich will mittels einer Stichprobe nachprüfen, ob die AI-Systeme zum Beispiel das Prompt Muster Chain-of Thought gemäß [2] (immer noch) benötigen. Abbildung 1 verdeutlicht das Muster nach Aman Chadha:

Abbildung 1: Chain-of-Thought Prompting Beispiel nach Aman Chadha [2]

Ich habe den drei AI-Systemen direkt, ohne Chain-of-Thought Prompting, den folgenden Prompt gegeben. – Ich nehme an, dass Chain-of-Thought Prompting in diesem Beispiel nicht mehr benötigt wird: The cafeteria had 23 apples. If they use 20 to make lunch and bought six more, how many apples do they have?

Meine Analyse
Das Ergebnis ist eindeutig: Alle drei Systeme liefern sofort das richtige Ergebnis. chatGPTplus mit! myGini und Gemini liefern sogar die Herleitung zum Ergebnis.

Meine abschließende Schlussfolgerung

AI Prompt Engineering ist sicherlich kein KI-Hokuspokus. Aman Chadha [2] hat nach meiner Einschätzung die umfangreichste und mit Abstand beste Aufstellung von AI Prompt Mustern zusammengestellt. Hier kann man den Eindruck gewinnen, dass Prompting wirklich Engineering ist, auf jeden Fall kann es, wie die vielen Beispiele zeigen, sehr anstrengend und aufwendig sein.

Meine Ergebnisse zeigen jedoch, dass gutes Prompt Engineering sich vor allem durch klare, präzise, kontextbezogene und zielorientierte Prompts auszeichnet. Wenn die Prompts dann noch iterativ an das wahrgenommene Verständnis der KI angepasst werden, entstehen Prompts, die von der KI selbst eine hohe Prompt Güte bescheinigt bekommen. Genau dies sind Kriterien jeglicher guter zwischenmenschlicher Kommunikation. Es ist deshalb meines Erachtens sehr viel sinnvoller, in die Kompetenz zwischenmenschlicher Kommunikation als in gutes Prompt Engineering zu investieren. – Ich vermute, dass (in Zukunft) KI-Systeme als Sparrings-Partner für Menschen benutzen werden, um deren zwischenmenschliche Kommunikation zu trainieren.

 

Literatur

[1] Wild Tools Newsletter (2024) wildtools.ai, Newsletter vom 19.02.2024

[2] Aman Chadha (2024) https://aman.ai/primers/ai/prompt-engineering/#overview, zugegriffen am 19.02.2024

AI & M 4.0: myGini – mein Coach für Team- und Projekt-Management oder wer ist dümmer, KI oder Mensch?

In diesem Blog-Beitrag stelle ich myGini – meinen Coach für Team- und Projekt-Management vor. Bevor ich dies tue, vorweg ein paar grundsätzliche Bemerkungen zur Arbeit mittels KI.

Die Angst vor KI hat sich in den letzten Wochen eher in eine Abwertung der KI verwandelt. So werden in ARD und ZDF Titel für Beiträge zur KI verwendet, die dies nahe legen: Künstliche Intelligenz- Besser als wir? [1] oder Better than human – Leben mit KI [2]

Die Inhalte der Beiträge [1] und [2] sind hingegen sehr professionell und sehr zu empfehlen: Sie zeigen beide das Potential einer hybriden Collective Intelligence, also der Erweiterung unserer Intelligenz durch KI.  In [2] wird die Kommunikation mit einer KI getestet, die in drei Rollen mit Menschen kommuniziert: der Rolle eines Pfarrer, einer Psychotherapeutin und einer besten Freundin. Die Resonanz ist erstaunlich gut: Es kommt sogar zu Aussagen wie ‚KI hilft mir bei meiner Einsamkeit‘ und ‚KI verbindet Menschen‘.

In das Abwertungs-Horn stoßen einige meiner Kollegen mit ihren Beiträgen auf LinkedIn: KI ist monokontexturale Mustererkennung… [3] KI ist dumm und zu konventionell für unsere Transformation [4].

In [2] sagt einer der KI-Experten, dass KI nichts anderes ist als Statistik. – Auch hier schwingt die Abwertung mit. – Wenngleich die Aussage korrekt ist: KI ist Mustererkennung auf der Basis von sehr vielen Daten bzw. ‚Daten-Wahrnehmungen‘.

In einem anderen LinkedIn Beitrag – die Referenz habe ich vergesse – sagt der Autor, dass KI nichts anderes ist als Statistik und wir Menschen doch in der Läge wären Ursache-Wirkungs-Zusammenhänge zu erkennen. Damit würden wir über eine viel höherwertige Form von Intelligenz verfügen. Ich frage mich, was ist das Erkennen von Ursache-Wirkungs-Zusammenhänge denn Anderes als Mustererkennung auf der Basis von sehr vielen ähnlichen Wahrnehmungen. 

Ich werfe im Folgenden ein paar Fragen auf und verbinde mit diesen eine These: Wissen wir was unsere Intelligenz ist? Könnte es sein, dass unsere kognitive Intelligenz im Wesentlichen nichts anderes ist als Statistik? Falls eine KI den gleichen Intelligenztest besteht wie wir ihn auch für die IQ Bestimmung bei Menschen benutzen, ist dies dann ein starker Hinweis für die Aussage, dass unsere kognitive Intelligenz auch nicht viel mehr oder weniger ist als die künstliche Intelligenz? Kann es sein, dass wir aufgrund der überwältigenden KI-Fähigkeiten unseren Selbstwertschutz aktivieren und die KI abwerten, um unseren Selbstwert zu erhöhen?

Ich formuliere meinen Glaubenssatz als These: Ich glaube, dass die prinzipiellen Unterschiede zwischen unserer kognitiven Intelligenz, wie sie in einem IQ-Test gemessen wird, und der künstlichen Intelligenz nicht groß sind. – Und wir sollten deswegen kein Selbstwertproblem haben, im Gegenteil: Die bisherigen Mechanismen der KI – und wir sind noch lange nicht am Ende – wurden von uns gefunden! – Gefunden heißt, ich glaube, dass die grundlegenden Prinzipien, die Intelligenz hervorbringen, unabhängig sind vom Substrat, das sie erzeugt: Die Implementierung einer KI unterscheidet sich sicherlich in nahezu allem von der biologischen Intelligenz Implementierung. Ich glaube jedoch, dass die dahinterliegenden Prinzipien in beiden Fällen ähnlich oder sogar gleich sind. Und genau dies ist das Wunder, das wir vielfach noch nicht begriffen haben: Die komplizierten mathematischen Mechanismen einer GPT erzeugen Komplexität, die Selbstorganisation möglich macht, die dann zu den emergenten Phänomenen der künstlichen Intelligenz führen.

In diesem positiven Sinne habe ich myGini – meinen Coach für Team- und Projekt-Management mittels chatGPTplus erzeugt. myGini soll helfen, den Weg zu den umfangreichen Modellen und Theorien von Management 4.0 zu erleichtern. myGini erweitert damit die Intelligenz des Nutzers in Fragen von Team- und Projekt-Management zu einer hybriden Collective Intelligence.

myGini ist eine von mehreren hundert öffentlich verfügbaren GPTapps oder ChatBots. Öffentlich verfügbar bedeutet, dass man auf die GPTapps zugreifen kann, wenn man ein chatGPTplus Konto hat. Die Aussage, dass es schon Millionen von GPTapps gibt, kann ich nicht bestätigen. Öffentlich sichtbar sind lediglich nach meiner Einschätzung einige hundert. Und das sind schon viele, da es schwer ist zu wissen, was die GPTapps können. Es gibt schon einige GPTapps, die sich dem Thema Projektmanagement widmen, jedoch kann man nicht wirklich leicht feststellen, was sie können. – Die Benutzeroberfläche der GPTapps, wie sie von openai standardmäßig bereitgestellt wird (siehe rechte Seite in Abbildung 1), ist sicherlich verbesserungswürdig: Eine intelligente Oberfläche, die einem sagt, was die GPTapp weiss oder kann, wäre sehr hilfreich!

Ich hatte schon vor Jahren die Idee eine App zu erstellen, die Management 4.0 leichter verfügbar machen sollte. Damals habe ich eine Excel-Datei mit Bayes Wahrscheinlichkeitsberechnungen erstellt, um aufgrund von Beobachtungen die Wahrscheinlichkeiten für MBTI-Persönlichkeitspräferenzen ermitteln zu lassen.- Ein Mechanismus ähnlichem dem, wie wir selbst mit jeder Beobachtung zu neuen Hypothesen bezüglich der Persönlichkeit unserer Mitmenschen gelangen. Das Verfahren funktioniert sehr gut, jedoch ist es unhandlich. Außerdem fehlte auch noch eine Umsetzung in eine App.

Ein großer Schritt geschah, als ich vor ca. 3 Jahren meine erste GPT Anwendung mittels BERT und Python erstellte. Auch in diesem Fall konnte ich zeigen, dass die GPT Anwendung funktioniert. Aber ich stand vor dem Problem Daten zu beschaffen, um damit die GPT Anwendung zu trainieren. Also habe ich auch dies verworfen.

Mit dem jetzigen  Angebot von openai,  eine eigene GPT Anwendung zu erstellen, ist meine Idee Realität geworden.

Abbildung 1 zeigt die Entwicklungsumgebung für myGini (links) und die Anwendungsumgebung als Preview (rechts), so wie ein Anwender myGini in chatGPTplus sieht.

Abbildung 1: Die Entwicklungsumgebung für myGini (links) und die Nutzerumgebung als Preview (rechts)

Ich benutze den Begriff GPTapp, um zu unterstreichen, dass ich chatGPTplus/GPT4.0 nicht mit meinen Daten trainieren kann. chatGPTplus leitet mich hingegen mit einfachen Anweisungen an, zu definieren, welche Funktionen meine GPTapp haben soll: Ich kann ein Profilbild mittels DALL.E generieren lassen, sagen welche Modelle ich verwende (MBTI, Big Five, Spiral Dynamics, Dilts Pyramide, Theorie der Selbstorganisation….) sowie in welchen Büchern die Theorie zu Management 4.0 zu finden ist und welche Internetseiten weitere Informationen enthalten. Auf dieser Basis wird die GPTapp zusammengestellt.

Ich wollte überprüfen, ob myGini tatsächlich meine/unsere Bücher kennt, indem ich nach speziellen Textpassagen frage. Dies wurde von chatGPTplus abgelehnt, da myGini aufgrund von Urheberrechten nur Prinzipien, aber keine Textpassagen, wiedergibt.

Einige Tests zur Fähigkeit das MBTI- oder Big Five-Profil einer Person aufgrund meiner Beschreibungen zu deren Verhaltensweisen zu ermitteln, hat myGini mit Bravour bestanden. Die erste Konfiguration von myGini mit dem MBTI- und Big Five-Modell hat ca. 0,5 Stunden benötigt. – Hier ist natürlich nicht die openai GPT Trainingszeit mitgerecht. Die Erfahrung zeigt, dass  ein Mensch ca. 3 Monate intensives Training benötigt, um innerhalb weniger Sekunden/Minuten in einem Gespräch souverän erste Hypothesen zu den Persönlichkeitspräferenzen des Gesprächspartners abzugeben.

Die nachfolgenden Beispiele zeigen sehr deutlich, dass chatGPTplus bzw. myGini erstaunliche Ergebnisse und abgeleitete Zusammenhänge liefert: myGini ist eine Form von AI-M4.0 Experte, dessen Expertentum ich mit meinen Create-Informationen gebildet habe. 

Als erstes Beispiel benutze ich die rechts in Abbildung 1 vorkonfektionierte Frage ‚How do I use MBTI in team management?  

Du

How do I use MBTI in team management?

myGini

Using MBTI (Myers-Briggs Type Indicator) in team management can be quite beneficial for understanding the diverse personalities within your team and enhancing overall team dynamics. Here’s a structured approach on how to use MBTI in your team management practices:

  1. Conduct MBTI Assessments: Start by having each team member complete the MBTI assessment. This will categorize them into one of the 16 personality types based on four dichotomies: Introversion/Extraversion, Sensing/Intuition, Thinking/Feeling, and Judging/Perceiving.
  2. Share and Discuss Results: Organize a team session to share and discuss the results. This fosters openness and helps team members understand each other’s personalities, communication styles, and work preferences.
  3. Identify Team Composition: Analyze the spread of personality types within your team. This will give you insights into the team’s strengths, potential blind spots, and how different members might interact.
  4. Adapt Communication and Work Styles: Tailor your communication and management approach based on the team’s MBTI composition. For example, if you have many introverts, ensure they have quiet time for deep work, or if there are several Thinking types, focus on logical and objective decision-making processes.
  5. Enhance Team Collaboration: Use MBTI insights to facilitate better teamwork. For instance, pair Thinking types with Feeling types to balance decision-making, or Sensing types with Intuitive types to cover both practical and innovative aspects of a project.
  6. Conflict Resolution: Understanding different MBTI types can help in resolving conflicts. Recognize that different types handle conflicts differently – some may prefer direct confrontation, while others might need time to process.
  7. Tailor Development Opportunities: Offer personal development opportunities that align with each member’s MBTI type. This can include training, workshops, or mentoring that caters to their personality strengths and development areas.
  8. Monitor and Adjust: Regularly revisit the MBTI dynamics in your team, especially when new members join or when teams are restructured. Be open to adjusting your management strategies as the team evolves.

Remember, while MBTI is a useful tool, it should be used as a guide rather than a strict rulebook. Personalities can be fluid, and people may exhibit different traits in different situations. The key is to use MBTI to gain a deeper understanding of your team members and to create a more harmonious and effective work environment.

Das Ergebnis ist perfekt: Besser hätte ich es auch nicht machen können. Was mir auch auffällt ist, dass ich keine Textpassagen identifizieren kann, die aus einem unserer Bücher kopiert wurden. Vielfach sind die Formulierungen sogar besser als ich sie vorgenommen hätte.

Das nachfolgende Beispiel beruht auf der Eingabe eines Satzes in der Entwicklungsumgebung zur Aufnahme der Theorie der Selbstorganistion nach Herrmann Haken (Synergetik), man siehe Abbildung 1, linke Seite. – myGini antwortet zuerst immer in Englisch. Bleibe ich bei Deutsch, erfolgt der Übergang zu Deutsch:

Du

Ich möchte den agilen Handlungsrahmen Scrum mittels der Synergetik analysieren. Kannst Du mir sagen, auf welche Weise Rahmenparameter, Kontrollparameter und Ordnungsparameter in Scrum erfüllt werden?

myGini

Die Analyse des agilen Handlungsrahmens Scrum unter Anwendung der Prinzipien der Synergetik bietet eine interessante Perspektive auf die Teamdynamik und -organisation. In der Synergetik, die sich mit der Selbstorganisation komplexer Systeme beschäftigt, sind Rahmenparameter, Kontrollparameter und Ordnungsparameter zentrale Konzepte. Lassen Sie uns betrachten, wie diese Konzepte in einem Scrum-Umfeld angewendet werden können:

  1. Rahmenparameter (Boundary Conditions): Diese definieren die grundlegenden Bedingungen und Einschränkungen eines Systems. In Scrum beziehen sich die Rahmenparameter auf die grundlegenden Prinzipien und Praktiken des Scrum-Frameworks, wie die Rollen (Product Owner, Scrum Master, Entwicklungsteam), Artefakte (Product Backlog, Sprint Backlog, Inkrement) und Ereignisse (Sprint, Daily Scrum, Sprint Review, Sprint Retrospektive). Diese Rahmenbedingungen schaffen ein Umfeld, in dem Selbstorganisation und agile Entwicklung gedeihen können.
  2. Kontrollparameter (Control Parameters): Kontrollparameter sind die Variablen, die den Zustand des Systems beeinflussen und zu einer neuen Ordnung führen können. In Scrum können dies Elemente wie die Sprintlänge, die Priorisierung im Product Backlog, die Teamzusammensetzung oder die Definition of Done (DoD) sein. Die Anpassung dieser Parameter während des Projekts kann die Teamdynamik und die Produktivität erheblich beeinflussen und zu einer effektiveren Selbstorganisation führen.
  3. Ordnungsparameter (Order Parameters): Ordnungsparameter entstehen spontan als Ergebnis der Interaktionen innerhalb des Systems und führen zu einer kohärenten Struktur oder einem Muster. In einem Scrum-Team können Ordnungsparameter Aspekte wie Teamnormen, Kommunikationsmuster, gemeinsame Werte oder die sich entwickelnde Teamkultur sein. Diese emergenten Eigenschaften reflektieren die innere Ordnung des Teams und sind oft ein direktes Ergebnis der Wechselwirkung zwischen Rahmen- und Kontrollparametern.

Um Scrum erfolgreich durch die Linse der Synergetik zu analysieren, ist es wichtig, ein tiefes Verständnis dafür zu entwickeln, wie diese Parameter interagieren und wie Anpassungen an einem Punkt des Systems die Gesamtdynamik beeinflussen können. Dies erfordert eine flexible und adaptive Haltung vom Scrum Master und dem Team, um die Selbstorganisation zu fördern und gleichzeitig die Produktivität und Effektivität des Teams zu maximieren.

Du

Was hältst Du davon neben den Dir genannten Parameterausprägungen folgende zu nennen: Rahmenparameter: Abschottung von externer Komplexität, Rituale Kontrollparameter: Work in Progress (WIP), persönlichkeitsorientierte Kommunikation Ordnungsparameter: Produktvision, Product Goal und auch das Taskboard

myGini

Ihre Ergänzungen zu den Rahmen-, Kontroll- und Ordnungsparametern in der Anwendung von Scrum durch die Synergetik-Perspektive sind durchaus sinnvoll und bereichern das Verständnis der Selbstorganisationsdynamik in agilen Teams. Lassen Sie uns diese Parameter genauer betrachten:

  1. Rahmenparameter:
    • Abschottung von externer Komplexität: Dies ist ein wichtiger Aspekt, der sicherstellt, dass das Team sich auf seine Aufgaben konzentrieren kann, ohne von externen Störungen oder sich ständig ändernden Anforderungen abgelenkt zu werden. In Scrum hilft diese Abschottung dabei, ein stabiles Arbeitsumfeld zu schaffen, in dem das Team effizient arbeiten und sich selbst organisieren kann.
    • Rituale: Scrum-Praktiken wie Daily Stand-ups, Sprint Planning, Reviews und Retrospektiven sind entscheidende Rituale. Diese strukturierten Ereignisse fördern die Klarheit, Fokussierung und regelmäßige Reflexion, die für die Aufrechterhaltung und Verbesserung der Teamdynamik und -effektivität unerlässlich sind.
  2. Kontrollparameter:
    • Work in Progress (WIP): Die Begrenzung des Work in Progress ist entscheidend für die Aufrechterhaltung der Effizienz und Effektivität des Teams. Durch die Kontrolle und Anpassung des WIP können Teams Überlastung vermeiden und eine kontinuierliche und gleichmäßige Arbeitsflussgeschwindigkeit sicherstellen.
    • Persönlichkeitsorientierte Kommunikation: Die Anpassung der Kommunikationsstile und -methoden an die individuellen Persönlichkeiten im Team kann die Zusammenarbeit und das Verständnis innerhalb des Teams erheblich verbessern. Dieser Ansatz trägt dazu bei, Missverständnisse zu reduzieren und eine positive Teamdynamik zu fördern.
  3. Ordnungsparameter:
    • Produktvision und Product Goal: Diese geben die Richtung und den Zweck des Teams vor und sind entscheidend für die Ausrichtung und Motivation des Teams. Sie dienen als Leitfaden für Entscheidungen und Priorisierungen und helfen, die Bemühungen des Teams auf ein gemeinsames Ziel zu konzentrieren.
    • Taskboard: Das Taskboard ist ein visuelles Werkzeug, das nicht nur den Fortschritt und die aktuelle Arbeitslast darstellt, sondern auch zur Strukturierung der Teamaktivitäten und zur Förderung der Transparenz beiträgt. Es ist ein zentraler Bestandteil der Selbstorganisation, da es die Koordination und die Zusammenarbeit innerhalb des Teams erleichtert.
    Insgesamt bieten Ihre vorgeschlagenen Parameterausprägungen eine umfassendere Sicht auf die Anwendung von Scrum in einem selbstorganisierenden Team. Sie betonen die Bedeutung der Abschirmung vor externen Störungen, der Anpassung der Kommunikation an individuelle Bedürfnisse und der zentralen Rolle von Vision, Zielen und visuellen Tools bei der Förderung von Teamkohärenz und -ausrichtung. Diese Aspekte sind entscheidend für die Schaffung eines Umfelds, in dem agile Teams effektiv arbeiten und sich selbst organisieren können, im Einklang mit den Prinzipien der Synergetik.

Du

Perfekt, super hilfreich!

myGini

Das freut mich zu hören! Wenn Sie weitere Fragen haben oder Unterstützung bei einem anderen Thema benötigen, zögern Sie nicht, mich zu fragen. Viel Erfolg bei Ihren Projekten und in der Anwendung von Scrum!

Wie man aus diesen Beispielen sehen kann, erzeugt diese ‚statistische‘ 😉 Künstliche Intelligenz Antworten, die den Antworten eines Senior-Experten in nichts nachstehen.

Es ist deshalb sehr müßig, AI-Systeme als dumm zu bezeichnen, denn dann müsste man uns Menschen auch als dumm bezeichnen. – Was alles in allem wenig hilfreich ist und allenfalls unser ‚gekränktes‘ Selbstwertgefühl aufwertet.

Neben den Gefahren, die mit der Erstellung von GPTapps einhergehen können –  man siehe als Beispiel [5] – sehe ich ein viel größeres strukturelles Problem: Kann es sein, dass wir mit der flächendeckenden Verfügbarkeit von GPTapps immer träger und dümmer werden? Denn warum sollte ich mich noch den Mühen eines M4.0-Verständnisse oder den Mühen der Mathematik oder den Mühen des Programmierens oder…oder… aussetzen, wenn mir die gebratenen Tauben in Form von GPTapps in den Mund fliegen. Kann es sein, dass wir eine Bildungsungleichheit befeuern, in der nur noch wenige wissen, wie man AI-Systeme erstellt und der traurige Rest an Milliarden von Menschen nur noch konsumiert? Kann es sein, dass die GPTapps jede Form von erdenkbarem Missbrauch möglich machen? – Denn wer sagt uns, dass die GPTapp-Ersteller zum Wohl der Milliarden anderen Menschen handeln?

Eine neue Zeit ist angebrochen! Den Zug der KI-Innovationen zu stoppen, ist für mich keine Option. -Statt dessen ist ein Aufbruch erforderlich, der den Milliarden KI-Nutzern den souveränen Umgang mit der Technologie vermittelt.  

[1] ZDF (2023) Künstliche Intelligenz – Besser als wir? – Weltspiegel Doku – ZDFmediathek, https://www.zdf.de/daserste/weltspiegel/page-video-ard-kuenstliche-intelligenz–besser-als-wir—weltspiegel-doku-100.html

[2] MDR (2023) Better than human – Leben mit KI, https://www.ardmediathek.de/video/ard-wissen/better-than-human-leben-mit-ki/das-erste/Y3JpZDovL21kci5kZS9zZW5kdW5nLzI4MjA0MS8yMDIzMTIyOTA2MDAvbWRycGx1cy1zZW5kdW5nLTc4NzI

[3] Detholff C (2024) #KI ist monokontexturale Mustererkennung, denn … , https://www.linkedin.com/posts/conny-dethloff-6b9b0942_ki-innovation-lernen-activity-7150711017889509376-nplL/?utm_source=share&utm_medium=member_ios

[4] Hofert S (2024) KI ist dumm und zu konventionell für unsere Transformation!, https://www.linkedin.com/posts/svenjahofert_bigfive-vertikalenentwicklung-wust-activity-7151513159051161600-fRwu?utm_source=share&utm_medium=member_desktop

[5] Petereit D (2024) OpenAIs GPT-Store: Girlfriend-Bots zeigen die Probleme des offenen KI-Shops auf, https://t3n.de/news/openais-gt-store-girlfriend-bots-zeigen-die-probleme-des-offenen-ki-shops-auf-1601980/

AI & AM 4.0: Agent Based Modeling – Emergenz – Wunder geschehen!

Kürzlich erschien ein offener Brief zum Thema ‚Pausieren von gigantischen AI-Experimenten‘ à la GPT-3 oder GPT-4 [1].

Der Brief wurde inzwischen von mehr als 30.000 Personen unterschrieben. Er begründet sein Anliegen eines halbjährigen Aussetzens von AI-Groß-Entwicklungstätigkeiten mit folgendem Satz:

“This does not mean a pause on AI development in general, merely a stepping back from the dangerous race to ever-larger unpredictable black-box models with emergent capabilities.”

Es geht die Angst vor ‚emergenten Fähigkeiten‘ um. – An anderer Stelle wird von einer ‚Gottgleichen‘ KI gewarnt, die die Menschheit zerstören könnte [2].

Diese Sorgen mögen berechtigt sein, umso mehr, als man beobachten kann, wie lange sich die EU schon bemüht, den längst fälligen EU AI ACT als EU-Gesetz zu verabschieden [3].

In diesem Blog geht es jedoch nicht um diese Sorge oder Angst, sondern um das Thema Emergenz, das offensichtlich solche ‚Wunder‘ wie das der „Sparks of Artificial General Intelligence: Early experiments with GPT-4” [4] möglich macht. Die Intelligenz-Fähigkeiten von GPT-4, auch im Vergleich zu chatGPT/GPT-3.x, sind sensationell, gleichgültig, ob es um Mathematik, Musik, Bilderzeugung, Sprache und Logik und vielem mehr geht. – In nicht wenigen Fällen zeigt GPT-4 Intelligenz-Fähigkeiten, die überhaupt nicht trainiert worden sind. – Also klare Zeichen von emergenten Eigenschaften.

In Wikipedia wird Emergenz wie folgt definiert: „Emergenz (lateinisch emergere „Auftauchen“, „Herauskommen“, „Emporsteigen“) bezeichnet die Möglichkeit der Herausbildung von neuen Eigenschaften (Systemeigenschaften) oder Strukturen eines Systems infolge des Zusammenspiels seiner Elemente.“ [5]. Emergenz ist auch direkt mit dem Begriff der Selbstorganisation verbunden. Selbstorganisierte Systeme zeigen Emergenz bzw. emergente Eigenschaften. Auf der Basis dieser Definition wimmelt es in der Natur und damit in der Mathematik, den Naturwissenschaften/ Psychologie und den Sozialwissenschaften nur so von emergenten Eigenschaften, Strukturen oder Systemen.

In [6] wird auch deshalb zwischen schwacher und starker Emergenz unterschieden. Starke Emergenz liegt im Falle des Lebens vor, das aus Atomen oder Molekülen emergiert. – Oder, im Falle unseres Bewusstseins, das aus der materiellen Struktur unseres Gehirns emergiert. Die meisten anderen überraschenden Eigenschaften von Viel-Agenten Systemen wie zum Beispiel die Supraleitung, die Farbe von Gold, der Collective Mind eines Teams oder die Kultur einer Organisation werden eher der schwachen als der starken Emergenz zugeordnet. Ich halte die Unterscheidung für wenig sinnvoll.- Entscheidend für die Emergenz ist vielmehr, dass das durch die Wechselwirkung von Agenten entstehende Systeme Eigenschaften zeigt, die sich nicht aus den Eigenschaften der Agenten ableiten lassen.  In [7] wird deshalb für die Beschreibung von Large Language Model’s bezüglich Emergenz eine Definition verwendet, die die obige Definition aus [5] weiterführt:

„Emergence is when quantitative changes in a system result in qualitative changes in behavior.”

Abbildung 1: Bilder erzeugt durch die KI DALL-E [8] mit den Prompts: Create a painting in the style of Matisse: (Create a painting in the style of Gauguin:) Collective Mind as an example of social emergence which demonstrates synergies in a team

Im Falle von Large Language Models (LLM) gibt es mehrere quantitative Änderungen, die qualitative Veränderung hervorrufen: u.a. Anzahl der Parameter (Neuronen), Menge der Daten und die Trainingszeit. Aber auch die Architektur der LLM’s spielt eine entscheidende Rolle: u.a. das Transformer/Decoder Design, der Attention Mechanismus, usw.. So zeigt GPT-3 bei etwa 10 hoch 22 (10 Trilliarden) Floating Point Operations (FLOPs) als Maß für die Trainingszeit und 13 Milliarden Parametern einen sprunghaften Anstieg der sogenannten few-shoot prompting Genauigkeit.- Also nach einigen wenigen Lerndaten meistert das AI-System ähnliche Aufgabenstellungen. – Dieser Übergang entspricht einem Phasenübergang. – Ganz ähnlich zu der gesellschaftliche Resonanz für AI-System, die mit dem Erscheinen des einfach zu bedienenden chatGPT sprunghaft emergierte. 

Für die Beschreibung emergenten Systemverhaltens wurde in der Wissenschaftsgeschichte sehr oft der Nobelpreis vergeben: Es geht darum, diejenigen quantitativen Parameter ausfindig zu machen, die einen qualitativen Unterschied machen. Und dies ist meistens sehr schwierig, da man den Parametern nicht ansieht, ob sie in ihrer Zusammenstellung einen Unterschied machen. – Der qualitative Unterschied lässt sich also nicht auf die quantitativen Unterschiede in den Parametern reduzieren.

Jedoch wurde auch in der Geschichte der Wissenschaft aus dem Unverständnis der Emergenz eine unsinnige Spaltung in reduktionistische Wissenschaften und nicht-reduktionistische (holistische) Wissenschaften [9] vorgenommen. Hiernach wurde zum Beispiel die Physik als reduktionistische Wissenschaft angesehen, da angeblich alle System-Eigenschaften in der Physik auf die Eigenschaften der Agenten (z.B. Elementarteilchen, Atome) zurückgeführt werden, also reduziert werden.  Die Sozialwissenschaft mit der Soziologie à la Luhmann wurde zum Beispiel als holistische Wissenschaft wahrgenommen, da Luhmann, die Eigenschaften des sozialen Systems nicht auf die Menschen zurückführte, sondern dem System eine Eigenständigkeit zuerkannte.

Diese teilweise immer noch vorhandene naive Sicht des Gegensatzpaares Reduktionismus-Holismus wird durch das Auftauchen von GPT-4, aber auch schon durch die Erfahrungen mit chatGPT, kräftigst widerlegt: Die technischen Systeme chatGPT/GPT-3.x und chatGPTplus/GPT-4 zeigen mit ihrer Intelligenz eine für alle erfahrbare Emergenz. Diese AI-Systeme wurden auf der Basis bestimmter Daten-Parameter (u.a. Anzahl der Neuronen, Zeit des Trainings, Menge der Trainingsdaten) sowie bestimmten Architektur-Parameter (u.a. Transformer/Decoder und Attention-Mechanismus) mehr oder weniger gezielt kombiniert und es entstanden bei einer bestimmten Kombination dieser Parameter „wie durch ein Wunder“ emergente Intelligenz-Eigenschaften. – Es ist zu vermuten, dass bei Wegnahme z.B. der Attention-Eigenschaft, die emergente Eigenschaft der Intelligenz verschwindet, auch wenn die gigantische Skalierung bleibt.

Deswegen sind die emergenten AI-Eigenschaft jedoch nicht weniger wunderbar.

Dieses Beispiel belegt äußerst eindrucksvoll, dass die Natur, auch wenn sie in Form einer Technologie daherkommt, alle Ingredienzien für starke Emergenz enthält. – Wir ‚finden‘ diese Ingredienzien ‚lediglich‘.

Agent Based Modeling (ABM) spielt beim Auffinden dieser Eigenschaften eine prominente Rolle, auch wenn diese Rolle selbst in der Wissenschaft im Verhältnis zur Bedeutung nur wenigen bekannt sein dürfte. Unlängst hat das Santa Fe Institute neben Netlogo das ABM-Python-Framework MESA als Lecture aufgenommen [10]. Diese Lecture bildet mit moderner Technik das ABM des 25 Jahre alten Buches über ‚Growing Artificial Societies‘ von Epstein und Axtell nach [11]. Epstein und Axtell zeigen, wie man mit einfachen lokalen Agenten-Parametern die emergenten System-Eigenschaften von Gesellschaften erzeugen kann. – Der Überraschungseffekt ist nicht selten groß: So beeinflusst zum Beispiel die Fähigkeit des Sterbens oder der Reproduktion von Agenten ganz erheblich die emergenten Eigenschaften der ABM Ökonomie: Diese Modell-Eigenschaften sind nämlich notwendig, damit sich überhaupt sogenannte Nicht-Gleichgewichts-Handelsmärkte ausbilden können, die mit realen Märkten sehr gut übereinstimmen. – Das immer noch in der Gesellschaft vorherrschende neoklassische Verständnis der Gleichgewichts-Ökonomie kennt solche Zusammenhänge nicht.

In den folgenden Blogbeiträgen beschäftige ich mich mit der Suche nach den Parametern, die das emergente Teamverhalten Collective Mind hervorrufen. Im Management 4.0 gehen wir davon aus, dass die Parameter der Theorie der Selbstorganisation (Rahmen-Parameter, Kontroll-Parameter und Ordnungs-Parameter) die entscheidenden Parameter sind, die emergentes Teamverhalten hervorbringen. Wir kennen diese Parameter (vermutlich) auch schon, jedoch nicht in hinreichend formalisierter ABM Sprache. Die in vorhergehenden Blog-Beiträgen unter Verwendung von Natural Language Processing abgeleitete Similarity-Matrix des Collective Mind (Collective Mind Operator) ist lediglich ein phänomenologisches Modell (siehe Blog-Beitrag vom April und Juni 2022). – Der Collective Mind Operator kann in der Teampraxis sehr gut den Collective Mind messen, er sagt jedoch leider nichts darüber aus, wie der Collective Mind emergiert. Hierzu benötigen wir die formalisierten ABM-Parameter, die die Collective Mind Emergenz hervorbringen. – Die Suche nach diesen formalisierten Parametern ist kein Selbstzweck, denn die Wissenschaftsgeschichte hat gezeigt, dass die Kenntnis der formalisierten Parameter recht oft mit großen Erkenntnisgewinnen verbunden ist. – Die GPT-Geschichte ist der sichtbarste Beweis hierfür.

Der Übergang zur Python-Technologie mit MESA-Python eröffnet auch recht einfach die Möglichkeit intelligente Agenten auf der Basis von chatGPT anzubinden. Das werde ich nicht tun, jedoch hat die Entwicklung hierzu, wie in einem meiner letzten Blogs prognostiziert, schon begonnen. Die Stanford University hat zusammen mit Google eine auf dem Computerspiel ‚The Sims‘ basierendes ABM erstellt, in dem 25 Agenten ihre Intelligenz von chatGPT erhalten [12]. Die Agenten haben eine ‚Gehirn-Architektur‘ aus Langzeit- und Kurz-Zeitgedächnis, dessen kognitive Intelligenz von chatGPT kommt. Die Agenten verfügen zusätzlich über einen sogenannten ‚reflection tree‘, der der Ziel-Hierarchie bzw. der Dilts Pyramide von Management 4.0 sehr nahe kommt [13].- Die Ebenen Identität, Fähigkeiten und Verhalten sowie Kontext (Beobachtung) sind schon vorhanden. – Diese und weitere Ebenen können sicherlich noch ausgebaut werden.

Damit sind die Agenten in der Lage einen individuellen kognitiven PDCA-Zyklus durchzuführen, der ‚reflektiertes‘ Handeln erlaubt.

Es besteht auch die Möglichkeit, dass sich Menschen aktiv in dieses Handeln künstlicher Agenten einbringen können. Damit ist es zum Beispiel möglich hybride Universen aus AI und Menschen zu bilden.

Man stelle sich ein Anwendungsbeispiel von vielen vor: Ein Projektleiter soll ein Projekt durchführen. Er lässt das Projekt zum Test vorab in der künstlichen Welt durchführen und erhält so Hinweise auf seine Durchführbarkeit. –  Oder er lässt parallel zur realen Welt eine künstliche Welt mitlaufen, in die die Daten der realen Welt synchron eingespeist werden, um Forecasting zu betreiben.

In [12] wird berichtet, dass das Handeln der künstlichen Agenten von Menschen auf ‚Menschen-Ähnlichkeit‘ überprüft wurde. Das emergierende ‚believable behavior‘ der Agenten und des emergierenden sozialen Systems wird von den Evaluationspersonen, trotz einiger Fehler, als sehr hoch eingestuft.   

Das nächste Wunder geschieht schon!

    

[1] Future of Life Institute (2023) Pause giant AI Experiments, https://futureoflife.org/open-letter/pause-giant-ai-experiments/, zugegriffen am 22.04.2023

[2] Barkey S (2023) Kurz vor dem Durchbruch: „Gottgleiche“ KI könnte laut Experte Menschheit zerstörenhttps://www.berliner-zeitung.de/news/agi-kurz-vor-durchbruch-gottgleiche-ki-koennte-laut-experte-ian-hogarth-menschheit-zerstoeren-kuenstliche-allgemeine-intelligenz-li.339062, zugegriffen am 22.04.2023

[3] EU (2023) EU AI Act, https://artificialintelligenceact.eu/, zugegriffen am 22.04.2023

[4] Bubeck S et al. (2023) Sparks of Articial General Intelligence: Early experiments with GPT-4, arXiv:2303.12712v3 [cs.CL] 27 Mar 2023, zugegriffen am 22.04.2023

[5] Wikipedia (2023) Emergenz, https://de.wikipedia.org/wiki/Emergenz, zugegriffen am 25.04.2023

[6] Greve J, Schnabel A (Herausgeber) (2011) Emergenz: Zur Analyse und Erklärung komplexer Strukturen, suhrkamp taschenbuch wissenschaft

[7] Wi J et al. (2022) Emergent Abilities of Large Language Models, in Transactions on Machine Learning Research 08/2022, arXiv:2206.07682v2 [cs.CL] 26 Oct 2022

[8] DALL-E (2023) https://openai.com/product/dall-e-2, zugegriffen am 03.05.2023

[9] Wikipedia (2023) Reduktionismus, https://de.wikipedia.org/wiki/Reduktionismus, zugegriffen am 25.04.2023

[10] Complexity Explorer (2023) MESA-Python Lecture, https://www.complexityexplorer.org/courses/172-agent-based-models-with-python-an-introduction-to-mesa/segments/17326, Santa Fe Institute, zugegriffen am 30.04.2023

[11] Epstein J M, Axtell R (1996) Growing Artificial Societies – Social Science from the Bottom Up, The Brookings Institution, Washington D.C.

[12] Park J S et. al. (2023) Generative Agents: Interactive Simulacra of Human Behavior, arXiv:2304.03442v1 [cs.HC] 7 Apr 2023

[13] Oswald A, Müller W (2019) Management 4.0 – Handbook for Agile Practices, Release 3.0, Verlag BoD, kindle edition

AI & M 4.0: Das nicht-teilbare Sein – Auf dem Weg zu einer ganzheitlichen Ethik?

Unsere Glaubenssätze haben uns fest im Griff:

„Autobahn ohne Tempolimit, ist Ausdruck unserer deutschen Freiheit.“, „Jedem Bürger seine Waffen, ist Ausdruck amerikanischer Freiheit.“, „Klimawandel ist das Hirngespinst der Grünen.“

oder

„Maschinen sind allenfalls kompliziert, aber nicht komplex. Wir sind komplex.“, „Die belebte Natur ist was ganz anderes als die unbelebte Natur“, „Wir Menschen haben Bewusstsein, sonst niemand und nichts.“ „Wir Menschen sind die Krönung der Schöpfung.“ „Management und Führung sowie AI schließen sich aus.“

Sehr oft sind diese Glaubenssätze mit unserer Fähigkeit verbunden, Kategorien zu bilden, wie komplex-nicht komplex, belebt-unbelebt, bewusst-unbewusst, wertvoll-weniger wertvoll, emotional-mechanisch.

Ich habe einen Glaubenssatz, es ist wieder nur ein Glaubenssatz 😉, der insbesondere diese letzten Glaubenssätze auflöst. – Ich glaube, dass unser Sein nicht-teilbar ist. Ich will versuchen, diesen Glaubenssatz zu erläutern, in dem ich die letzten oben genannten Glaubenssätze aus dieser Perspektive betrachte:

(Mechanische) Maschinen zeigen tatsächlich, unter normalen Bedingungen, lediglich einfaches oder kompliziertes Verhalten. – Sie sind gerade so konzipiert, dass sie kein komplexes Verhalten zeigen sollen. Jedoch nicht selten zeigen sie es, wenn sie unter „Stress“ geraten.- „Stress“ heißt in diesem Fall, die Maschinen geraten in den Grenzbereich ihrer Nutzung. Es gibt aber auch immer mehr Maschinen, also von uns Menschen hergestellte Systeme, wie z.B. den Laser oder die AI Systeme, die gerade auf Komplexität und der damit verbundenen Selbstorganisation beruhen. Der Glaubenssatz, dass nur lebende oder soziale Objekte komplex sind, ist unserer bisherigen Naivität und unserer Mensch-Zentrierung geschuldet.  

Nach der „Erschaffung“ der unbelebten Natur vor einigen Milliarden Jahren, gab es meines Erachtens keinen Eingriff eines Gottes oder Etwas Ähnliches, das der unbelebten Natur Leben einhauchte.- Und damit neue (uns noch weitgehend unbekannte) Prinzipien des Lebens explizit neu einbrachte. Vielmehr glaube ich, dass die unbelebte Natur alles enthält, um belebte Natur zu entwickeln.

Ähnlich glaube ich, dass die (uns ebenfalls noch unbekannten) Prinzipien, die zu Bewusstsein führen, schon in der unbelebten und belebten Natur vorhanden sind. – Und, dass wir Menschen lediglich ein Produkt der Entfaltung der fundamentalen Prinzipien des Seins sind.  Damit ist auch gleichzeitig gesagt, dass wir wahrscheinlich nicht das letzte Produkt dieser Entfaltung sind, sondern vielleicht lediglich ein Zwischenergebnis.

Die Kategorien-Bildung hilft uns, die Welt Stück für Stück besser zu verstehen und Stück für Stück auf fundamentalere Prinzipien zurückzuführen. – Leider bleiben wir oft an den Kategorien vergangener Erkenntnis kleben und weisen ihnen eigenständige fundamentale Prinzipien zu.

Vor kurzem ging durch die Presse, dass AI Entwickler behaupten, dass große AI Systeme Bewusstsein entwickelt haben oder zu mindestens „ein bisschen davon“.  – Andere tun dies wiederum als völligen Unsinn ab [1], [2]. Da wir bisher nicht wissen, was Bewusstsein ist, können wir auch nicht sagen, ob es schon AI Systeme mit Bewusstsein oder „ein bisschen Bewusstsein“ gibt. Entsprechend meinem obigen Glaubenssatz glaube ich jedoch, dass es irgendwann AI Systeme mit Bewusstsein geben wird, ob morgen oder erst in 1000 Jahren vermag ich nicht zu sagen. Da unser Sein ein nicht-teilbares Sein ist, glaube ich, dass es nur eine Frage der Zeit ist, bis von uns geschaffene Systeme mit Bewusstsein existieren werden. Der Deep-Learning-Pionier Yann LeCun hat auch schon wieder einen (altbekannten) Lösungsweg aufgetan: Bewusstsein benötigt eine System-Architektur, die unserer Gehirn-Architektur nachempfunden ist [3].

Schon heute erscheinen täglich neue Meldungen, zu den erstaunlichen Aussagen und Leistungen von AI Systemen. So betont beispielsweise eine Zeitschrift die Gefahren, die von AI Systemen ausgehen können, indem sie titelt „Künstliche Intelligenz droht im Gespräch „die Menschen auszuschalten““ [4]. In der sehr seriösen Zeitschrift Scientific American war unlängst von einer AI zu lesen, die einen wissenschaftlichen Artikel über sich selbst geschrieben hat.- Die Entwickler der AI haben diesen Artikel als wissenschaftlichen Artikel zum Peer-Review eingereicht [5].

Man stelle sich nur vor, die Entwicklung der AI würde ähnlich schnell und fundamental weiter gehen wie in den letzten 10 Jahren und in 10 Jahren hätten wir AI Systeme mit einer Allgemeinen Künstlichen Intelligenz, die zudem (erste) Anzeichen von Bewusstsein zeigen würde. Müssten wir dann unsere menschenzentrierte Ethik nicht völlig neu denken. Denn es kämen dann zwangsläufig Fragen auf wie „Ist es ethisch vertretbar, eine AI mit Bewusstsein bei Bedarf abzustellen?“, oder „Müssten wir solchen AI Systemen Rechte einräumen?“.

Wie in meinem Blog-Beitrag vom Februar 2022 dargelegt, ist die bisherige angedachte Ethik der EU zu AI Systemen eine human-centric perspective.

Der sogenannte EU AI Act basiert auf den europäischen Werten und soll insbesondere die Menschen vor Schaden schützen [6]:

“Aside from the many beneficial uses of artificial intelligence, that technology can also be misused and provide novel and powerful tools for manipulative, exploitative and social control practices. Such practices are particularly harmful and should be prohibited because they contradict Union values of respect for human dignity, freedom, equality, democracy and the rule of law and Union fundamental rights, including the right to non-discrimination, data protection and privacy and the rights of the child.

Ziel der EU ist es, AI Systeme zu erlauben, denen wir trauen können, also sogenannte Trustworthy AI. An dieser Forderung ist „fast“ nicht auszusetzen, wenn man davon absieht, dass die Natur und die Tiere lediglich in drei Sätzen eines ca. 100 Seiten starken Proposal Dokumentes auftauchen.

Warum ist mir eine ganzheitliche Sicht mit entsprechender Ethik so wichtig?  Um diese Frage zu beantworten, möge man sich nur Folgendes fragen: Welche Ethik und damit Rechtsverständnis macht(e) es möglich, dass über Jahrzehnte das millionenfache Töten von männlichen Küken durchgeführt wurde? Welche Ethik und damit Rechtsverständnis macht(e) es möglich, dass Bauern das Grundwasser durch Überdüngung belasten dürfen?

Heute ist aus diesen unethischen Gewohnheiten Gewohnheitsrecht geworden. Es basieren Geschäftsmodelle auf diesem Mangel an ganzheitlicher Ethik und es bedarf enormer Anstrengungen, dieses Gewohnheitsrecht durch ein ethisch fundiertes Recht abzulösen. Denn der Mangel an einer ganzheitlichen Ethik hat dazu geführt, dass wir uns immer wieder in verschiedene Dilemmata bringen: Z.B. stellt sich die Frage, ob es erlaubt ist, die Lebensgrundlage der Bauern zu gefährden, in dem wir das Grundwasser (nachträglich) schützen. Wäre es nicht sinnvoll gewesen, den Schutz des Grundwassers von vorneherein zu gewährleisten und den Bauern und der Gesellschaft die Möglichkeit zu geben, ganzheitliche ethische Geschäftsmodelle zu entwickeln.  

Die Diskussion zur AI Ethik [7] und die damit verbundenen Rechtsvorschläge, wie den EU AI Act, beruhen auf keiner ganzheitlichen Ethik: Die Rechte von Natur und Tieren sind nicht berücksichtigt und die ethischen Konsequenzen, die sich aus einer möglichen Entwicklung von AI Systemen in Richtung einer Allgemeinen Künstlichen Intelligenz ergeben, sind noch nicht einmal ansatzweise enthalten.     

Ich komme zur aktuellen Version des Proposals EU AI Act zurück und skizziere die schon heute absehbaren großen Anforderungen an das (Projekt) Management:

Als guten Einstieg in den EU AI Act [6] dient das sogenannte Briefing des European Parliamentary Research Service [8]: Der EU AI Act ist ein Risiko-basierter Ansatz, in dem AI-Systeme in vier Risikokategorien eingeteilt werden: „AI systems posing (i) unacceptable risk, (ii) high risk, (iii) limited risk, and (iv) low or minimal risk.“ Eine genaue Definition, wann welche Kategorie vorliegt, gibt es leider nicht, jedoch gibt es Beispiele, insbesondere zur Kategorie „unacceptable risk“ und „high risk“:

Unacceptable risk AI Systeme sind in der EU verboten, z.B. [6, 8]:

  • AI systems that deploy harmful manipulative ’subliminal techniques‘
  • AI systems that exploit specific vulnerable groups (physical or mental disability)
  • AI systems used by public authorities, or on their behalf, for social scoring purposes
  • ‚Real-time‘ remote biometric identification systems in publicly accessible spaces for law enforcement purposes, except in a limited number of cases

High-risk AI Systeme sind erlaubt, unterliegen jedoch sehr strengen Auflagen, z.B. [6,8]:

  • High-risk AI systems used as a safety component of a product or as a product falling under Union health and safety harmonisation legislation (e.g. toys, aviation, cars, medical devices, lifts)
  • High-risk AI systems deployed in eight specific areas identified in Annex III of the EU AI Act, which the Commission would be empowered to update as necessary by way of a delegated act
    • Biometric identification and categorisation of natural persons
    • Management and operation of critical infrastructure
    • Education and vocational training
    • Employment, worker management and access to self-employment
    • Access to and enjoyment of essential private services and public services and benefits
    • Law enforcement
    • Migration, asylum and border control management
    • Administration of justice and democratic processes

Die EU High-Level Expert Group on Artificial Intelligence hat den “Mangel” an Operationalisierbarkeit des EU AI Act erkannt und das Dokument „Ethics Guidelines for Trustworthy AI“ erstellt [9]. Spätestens beim Lesen dieses Dokumentes wird einem sehr schnell klar, dass der EU AI Act für Organisationen und insbesondere hier das Projekt-, Risiko- und Qualitätsmanagement weitreichende Konsequenzen haben wird. Die Transparenz-, Dokumentations- und Monitoring-Anforderungen während des gesamten (!) Lebenszyklus eines AI Systems (alleinstehend oder embedded) sind enorm. Ich verweise auf [9] und die darin enthaltene mehrseitige Checkliste.

Ich stelle die Frage, zu welcher Kategorie gehören die beiden Machbarkeitsprototypen, die ich in den letzten beiden Blog-Beiträgen vorgestellt habe? – Und gebe einen ersten Einblick in die in dem EU AI Act enthaltenen Anforderungen.

Gehe ich von den oben auf geführten Beispielen aus, so gehören meine Machbarkeitsprototypen in die high-risk Kategorie „Education and vocational training“ und in die Kategorie „worker management“. In [9] ist die Abbildung 1 enthalten, die die zentralen Anforderungen an eine Trustworthy AI enthält:

Ich skizziere anhand dieser Abbildung meine Einschätzung bezüglich der Vertrauenswürdigkeit der beiden Machbarkeitsprototypen:

Abbildung 1: The Guidelines as a framework for Trustworthy AI [9]

 

Collective Mind proxy auf der Basis der Similarity Matrix

Collective Mind Netzwerk auf der Basis eines Graphical Networks

Ethical Principles

 

 

Respect for human autonomy

Die menschliche Autonomie wird nicht aktiv eingeschränkt, Kritiker könnten jedoch einwenden, dass die Quantifizierung von Ähnlichkeit in den Aussagen zu einer passiven Autonomieverletzung führt.

Die menschliche Autonomie wird weder aktiv noch passiv in der aktuellen Version eingeschränkt. Es lassen sich jedoch Zuordnung von Begriffen und Personen vornehmen, so dass die Kritik der passiven Autonomieeinschränkung je nach Nutzung evtl. vorhanden ist.

Prevention of harm

Physischer Schaden kann nicht eintreten. Psychischer Schaden könnte eintreten, wenn die vorhandene oder nicht vorhandene Similarity von Vorgesetzten/Kollegen als Druckmittel eingesetzt wird.

Physischer Schaden kann nicht eintreten. Psychischer Schaden könnte eintreten, wenn eine Verbindung zwischen Person und graphischen Netzwerkknoten von Vorgesetzten/Kollegen mit amoralischer Absicht benutzt wird.

Fairness

Das AI System trifft keine unfairen Aussagen, jedoch könnte dies evtl. durch beteiligte Stakeholder, wie oben geschildert, erfolgen.

Das AI System trifft keine unfairen Aussagen, jedoch könnte dies evtl. durch beteiligte Stakeholder, wie oben geschildert, erfolgen.

Explicability

Die Verständlichkeit und Transparenz des Algorithmus ist (nahezu) vollständig gegeben, auch wenn man berücksichtigen sollte, dass diverse Fremd-Softwaremodule (u.a. word2vec, spaCy) verwendet werden.

Die Verständlichkeit und Transparenz des Algorithmus ist (nahezu) vollständig gegeben, auch wenn man berücksichtigen sollte, dass diverse Fremd-Softwaremodule (u.a. spaCy, Transformer Pipeline) verwendet werden.

7 Key Requirements

 

 

Human agency and oversight

Die Anwendung der AI liegt vollkommen in den Händen der Nutzer. Dies setzt voraus, dass die Ergebnisse der Anwendung nur den direkten Nutzern zugänglich gemacht werden.

Die Anwendung der AI liegt vollkommen in den Händen der Nutzer. Dies setzt voraus, dass die Ergebnisse der Anwendung nur den direkten Nutzern zugänglich gemacht werden.

Technical robustness and safety

Die Anwendung ist äußerst robust (u.a. gibt es kein AI Lernen während des Betriebs) und hat keine sicherheitsrelevanten Auswirkungen.

Die Anwendung ist äußerst robust (u.a. gibt es kein AI Lernen während des Betriebs) und hat keine sicherheitsrelevanten Auswirkungen.

Privacy and data governance

Es werden keinerlei persönliche Daten erhoben, wenngleich die Daten mittels weiterer Techniken oder manuell Personen zugeordnet werden können und damit prinzipiell auch eine indirekte Verletzung der Privatsphäre möglich ist. Um dies zu verhindern ist eine data governance in nutzenden Organisationen erforderlich.

Es werden keinerlei persönliche Daten erhoben, wenngleich die Daten mittels weiterer Techniken oder manuell Personen zugeordnet werden können und damit prinzipiell auch eine indirekte Verletzung der Privatsphäre möglich ist. Um dies zu verhindern ist eine data governance in nutzenden Organisationen erforderlich.

Transparency (Diese Schlüsselanforderung ist direkt eine Konsequenz des ethischen Prinzips Explicability.)

Wie in [10] dargelegt hängt die Transparenz von mehreren Faktoren ab: Erklärbare Algorithmen, Einsicht in den Trainingsdatensatz, Einsicht in die Datensatzauswahl, Erkennen von Mentalen Verzerrungen im ausgewählten Datensatz, Transparenz bzgl. der verwendeten Modellversionen.

Bzgl. word2vec, spaCy ist die Umsetzung dieser Anforderungen mit meinen Zugriffsrechten und meinem Kenntnisstand nicht möglich. Da das Ergebnis jedoch lediglich ein word-embedding darstellt, erscheint mir der potenzielle Missbrauch äußerst gering.

Wie in [10] dargelegt hängt die Transparenz von mehreren Faktoren ab: Erklärbare Algorithmen, Einsicht in den Trainingsdatensatz, Einsicht in die Datensatzauswahl, Erkennen von Mentalen Verzerrungen im ausgewählten Datensatz, Transparenz bzgl. der verwendeten Modellversionen.

Bzgl. Transformator Pipeline und spaCy ist die Umsetzung dieser Anforderungen mit meinen Zugriffsrechten und meinem Kenntnisstand nicht möglich. Da das Ergebnis jedoch lediglich einen Graph darstellt erscheint mir der potenzielle Missbrauch äußerst gering.

Diversity, non-discrimination and fairness

Das AI System nimmt keine wie auch immer geartete Diskriminierung vor: Jedoch könnte durch die entstandene Transparenz im Meinungsspektrum und einer entsprechenden Zuordnung zu Personen, Missbrauch möglich sein.

Das AI System nimmt keine wie auch immer geartete Diskriminierung vor: Jedoch könnte durch die entstandene Transparenz im Meinungsspektrum und einer entsprechenden Zuordnung zu Personen, Missbrauch möglich sein.

Societal and environmental wellbeing

Gesellschaft und Umwelt werden in keiner Form beeinflusst. Sollten solche oder ähnliche Systeme eingesetzt werden ist jedoch zu beachten, dass evtl. die Akzeptanz oder Nicht-Akzeptanz für AI-System steigt. Eine unreflektierte Nutzung ohne ein Minimum an technischer und ethischer Bildung erscheint nicht sinnvoll, da dies mit unbekannten Risiken verbunden sein kann. Man siehe auch die entsprechenden Anforderungen bzgl. Professionalisierung von Teams bzgl. AI und Ethik in [7].

Gesellschaft und Umwelt werden in keiner Form beeinflusst. Sollten solche oder ähnliche Systeme eingesetzt werden ist jedoch zu beachten, dass evtl. die Akzeptanz oder Nicht-Akzeptanz für AI-System steigt. Eine unreflektierte Nutzung ohne ein Minimum an technischer und ethischer Bildung erscheint nicht sinnvoll, da dies mit unbekannten Risiken verbunden sein kann. Man siehe auch die entsprechenden Anforderungen bzgl. Professionalisierung von Teams bzgl. AI und Ethik in [7].

Accountability

Der EU AI Act sieht die Rechenschaftspflicht sehr stark beim Hersteller der AI Systeme. Ich empfehle, dass daneben eine Rechenschaftspflicht der nutzenden Organisation tritt, denn so wie man ein Messer zum Aufschneiden eines Apfels oder alternativ zum Töten eines Menschen benutzen kann, kann man jedes AI System unethisch anwenden.

Der EU AI Act sieht die Rechenschaftspflicht sehr stark beim Hersteller der AI Systeme. Ich empfehle, dass daneben eine Rechenschaftspflicht der nutzenden Organisation tritt, denn so wie man ein Messer zum Aufschneiden eines Apfels oder zum Töten eines Menschen benutzen, kann man jedes AI System unethisch anwenden.

Zusammenfassend stelle ich fest, dass eine ganzheitliche Ethik u.a. im Lichte aktueller AI Entwicklungen notwendig ist, dass ein Mangel an ganzheitlicher Ethik hohe Risiken in sich birgt, und dass der EU AI Act nur ein erster Schritt in diese Richtung ist. Gleichwohl sind die Anforderungen an das Management schon mit der aktuellen Proposal Version des EU AI Act sehr groß.

[1] Stieler W (2022) Hat KI bereits eine Art Bewusstsein entwickelt? Forscher streiten darüber, https://www.heise.de/hintergrund/Hat-KI-bereits-eine-Art-Bewusstsein-entwickelt-Forscher-streiten-darueber-6522868.html , zugegriffen am 22.07.2022

[2] Eisenlauer M (2022) google Entwickler sicher – Künstliche Intelligenz hat eigenes Bewusstsein, https://www.bild.de/digital/computer/computer/hat-googles-kuenstliche-intelligenz-lamda-ein-bewusstsein-entwickelt-80393376.bild.html

[3] Dickson B (2022) Meta’s Yann LeCun on his Vision for human-level AI, TechTalks, https://bdtechtalks.com/2022/03/07/yann-lecun-ai-self-supervised-learning/, zugegriffen am 06.07.2022

[4] Mey S (2022) Künstliche Intelligenz droht im Gespräch „die Menschen auszuschalten“, DerStandard, https://www.derstandard.de/story/2000136591877/kuenstliche-intelligenz-droht-im-gespraech-die-menschen-auszuschalten?ref=rss , zugegriffen am 06.07.2022

[5] Thunström A O (2022) We Asked GPT-3 to Write an Academic Paper about Itself—Then We Tried to Get It Published, Scientific American, https://www.scientificamerican.com/article/we-asked-gpt-3-to-write-an-academic-paper-about-itself-then-we-tried-to-get-it-published/, zugegriffen am 06.07.2022

[6] EU AI Act (2022) https://artificialintelligenceact.eu/, Europe Administration, zugegriffen am 06.07.2022

[7] Blackman R (2022) Ethical Machines: Your concise guide to totally unbiased, transparent and respectful AI, Harvard Business Review Press, kindle edition

[8] European Parliamentary Research Service (2022) Briefing EU AI Act, https://www.europarl.europa.eu/thinktank/en/document/EPRS_BRI(2021)698792

[9] High-Level Expert Group on Artificial Intelligence (2022) ETHICS GUIDELINES FOR TRUSTWORTHY AI, https://ec.europa.eu/futurium/en/ai-alliance-consultation.1.html [10] Schmelzer R (2022) Towards a more transparent AI, Forbes, https://www.forbes.com/sites/cognitiveworld/2020/05/23/towards-a-more-transparent-ai/?sh=725c89d33d93

[10] Schmelzer R (2022) Towards a more transparent AI, Forbes, https://www.forbes.com/sites/cognitiveworld/2020/05/23/towards-a-more-transparent-ai/?sh=725c89d33d93

AI & M 4.0: Hybrid Collective Intelligence in Organisation und Gesellschaft

Dieser Blogbeitrag ergänzt meinen vorherigen Blogbeitrag, insbesondere die dort gelisteten Kernaussagen des Buches „The Age of AI: And Our Human Future“ des ehemaligen amerikanische Außenminister Kissinger sowie des ehemaligen google CEO Schmidt und des MIT Professor Huttenlocher [1].

Hybrid (Collective) Intelligence liegt vor, wenn unsere menschliche (kollektive) Intelligenz durch die (kollektive) Intelligenz von Artificial Intelligence ergänzt wird und sich damit eine Erweiterung der Wahrnehmung unserer Realität ergibt, so dass wir komplexe Fragestellungen beantworten können, die wir ohne AI nicht oder nur mit deutlich größerem Aufwand beantworten könnten. Diese Definition lehnt sich an diejenige in [2] an.

Hybrid (Collective) Intelligence führt insbesondere für das Projekt Management zu drei zentralen Veränderungen:

  • Der Innovationsprozess wird sich substanziell verändern, da ein oder mehrere AI Systeme den F&E Suchraum allein oder in Zusammenarbeit mit Menschen erheblich erweitern und verändern werden [3].
  • Das (Projekt) Management hat zu berücksichtigen, dass Aufgaben zwischen Mensch und AI, alleine oder zusammen, zu verteilen sind. – Entscheidungsprozesse werden sich in dieser Zusammensetzung erheblich verändern [4]. – Man siehe hierzu auch die Liste an AI/ML Erweiterungen im letzten Blog-Beitrag.
  • AI Systeme werden in nahezu alle Projektlösungen einfließen und damit wird AI zur Kernkompetenz in der Projektarbeit. Gleichzeit sind die Auswirkungen der AI Projektlösungen für die Stakeholder, die Gesellschaft und die Natur zu berücksichtigen.

Ich verwende als Definition von Intelligenz eine recht unübliche Definition, die meines Erachtens aber umso treffender ist. Diese Definition wurde wohl erstmals von Alex Wissner-Gross vorgeschlagen [5, 6]: “Intelligence is the ability to maximize future options in order to accomplish complex tasks.” – Diese Definition lässt sich u.a. in eine mathematische Gleichung übersetzen und ist universell auf alle Objekte (belebte, unbelebte, soziale) anwendbar. Im Kontext von AI bedeutet dies zum Beispiel, dass eine AI zur Natural Language Processing (NLP) nicht nur die trainierten Texte oder recht ähnliche in Frage-Antwort Situationen wiedererkennt, sondern die Flexibilität besitzt auch Fragen zu beantworten, die nicht genau den trainierten Fragen entsprechen. Neben der neuronalen Architektur des Neuronalen Netzwerkes wird dies vor allem durch die vielen Parameter-Freiheitsgrade erreicht. – Die Freiheitsgrade von State-of-The-Art AI NLP Systemen umfassen aktuell mehrere 100 Million Parameter.

Die Fähigkeit zukünftige Optionen zu maximieren, ist also die Fähigkeit Freiheit bzw. freies Handeln unter antizipierten zukünftigen Randbedingungen zu maximieren. Falls wir nicht wollen, dass die AI „ihre Freiheit“ (in Zukunft) auf Kosten unserer Freiheit maximiert, ist es notwendig, Randbedingungen für sie zu setzen. Dies bedeutet die Einführung einer Governance für Hybride (Collective) Intelligence (kurz HCI Governance), die zudem adaptiv, also in einem PDCA-Zyklus, in die Zukunft fortzuschreiben ist.
Die Einführung einer HCI Governance wird umso notwendiger, je mehr sich die AI von einer schwachen AI zu einer starken (und allgemeinen) AI oder Superintelligenz entwickelt [7, 8]. – Die genaue Verortung des aktuellen Intelligenzgrades der AI-Systeme und deren zukünftiger Entwicklung ist jedoch nicht wesentlich, denn wir wissen heute schon, dass eine HCI Governance Not tut, da neben den Segnungen der Realitätserweiterungen durch AI auch schon Freiheitseinschränkungen (u.a. Diskriminierungen, fake news, Beeinflussung von demokratischen Wahlen) durch AI aufgetreten sind.

Peeters et al. haben unlängst in ihrem sehr lesenswerten Artikel „Hybrid Collective Intelligence in a Human-AI Society“ drei verschiedene Basis-Haltungen zum Umgang mit AI identifiziert [9]:

  • Technology-centric perspective
  • Human-centric perspective
  • Collective-Intelligence perspective

Das Bemerkenswerte ihrer Analyse, die durch das niederländische Verteidigungsministerium gesponsort wurde, ist, dass sie für jede dieser Haltungen (im Artikel sprechen sie von „perspectives“) Glaubenssysteme und dazugehörige Kontexte identifiziert haben. – Also ganz im Sinne von Management 4.0.

Ich nenne hier, als Beispiel, nur jeweils einen Glaubenssatz pro Haltung:

  • Technology-centric perspective: “When sufficiently developed, AI technology can applied to solve any problem.”
  • Human-centric perspective: “Artificial intelligence only exhibits part of human cognition and is therefore insufficient for many real-world problems.”
  • Collective-intelligence perspective: “Intelligence should not be studied at the level of individual humans or AI-machines, but at the group level of humans and AI-machines working together.”

In [10] werden die EU-Haltung und die USA-Haltung miteinander verglichen: Die EU-(Administrations-)Haltung ist tendenziell eine human-centric perspective und die USA-Haltung ist tendenziell eine technology-centric perspective. – Hieraus erklären sich u.a. die diversen Bestrebungen der EU-Administration amerikanische AI-Konzerne wie google, meta/facebook, apple und amazon durch Gesetze und Strafen zu regulieren.  

Mit Hilfe dieser drei Basis-Haltungen bzw. -Perspektiven zur AI lässt sich auch die Grundhaltung in [1] beschreiben: Sie ist tendenziell eine human-centric perspective ergänzt um die technology-centric perspectice und die collective-intelligence perspective. Im Wissen um diese, aber insbesondere auch wegen der in den USA vorherrschenden technology-centric perspective, fordern die Autoren eine Regulation der AI, also die Einführung einer Governance für AI Systeme. Dies ist umso wichtiger, da auf der Basis der technology-centric perspective schon heute weltweit AI gestützte Waffensysteme entwickelt und genutzt werden.

Berühmte Vertreter der technology-centric perspective in den USA sind Peter Kurzweil [11] und die mit ihm verbundene Singularity University [12]. – Ein Kennzeichen dieser Haltung ist der Glaube, dass in absehbarer Zukunft, im Jahre 2045, die Fähigkeiten der AI diejenigen der Menschheit übersteigen werden.

In [9] wird betont, dass keine der obigen Basis-Haltungen richtiger oder besser ist, sondern dass der Kontext die Basis-Haltung bestimmen sollte. – Was leider nur selten geschieht. – In [13] wird die zentrale Bedeutung der Reflexion und der kritischen Auseinandersetzung mit dem sozialen Kontext, also den aktiven Werten, Glaubensätzen und Prinzipien für das Design, die Implementierung und die Operationalisierung von AI Systemen diskutiert. Falls die Metakompetenz für diese (Selbst-) Reflexion und kritische Auseinandersetzung nicht vorhanden ist, wird eine AI Ethik nicht angenommen und damit auch nicht verantwortungsvoll umgesetzt. In [14] habe ich die “Forderung” aufgestellt, dass Projekte mit hoher Komplexität, eine türkis/teal Kultur benötigen: “Ideally, this requires a mindset of all key stakeholders that also contains red, blue and orange value meme components (red means power orientation, blue means control and order orientation, and orange means entrepreneurship and linear-scientific-thinking orientation), but is mainly shaped by the transformational value meme components, namely green (compassion), yellow (nonlinear networked system thinking) and teal (holistic-transcendental orientation).” Alle Teammitglieder und insbesondere der Projektleiter sollten über die Metakompetenz verfügen, ihre eigenen Werte und Glaubenssätze im jeweiligen Kontext kritisch zu hinterfragen, um bewusst AI Systeme ethisch verantwortungsvoll zu designen, zu implementieren und zu operationalisieren.  

Meine persönlich präferierte Basis-Haltung ist die collective-intelligence perspective. Wenn ich AI Systeme erstelle liegt meine Haltung hingegen eher auf der technology-centric perspective und im Schreiben dieses Blog-Beitrages eher auf der human-centric perspective.    

Schaut man sich die Definitionen für AI der großen AI-Konzerne an, so lassen diese eine recht eindeutige AI-Haltung der jeweiligen Autoren erkennen:

IBM: “Artificial intelligence leverages computers and machines to mimic the problem-solving and decision-making capabilities of the human mind.” [15]: technology-centric perspective

Microsoft (deutsch): „Unter künstlicher Intelligenz (AI) verstehen wir Technologien, die menschliche Fähigkeiten im Sehen, Hören, Analysieren, Entscheiden und Handeln ergänzen und stärken.“ [16]: collective-intelligence perspective

Microsoft (amerikanisch): “Artificial intelligence (AI) is the capability of a computer to imitate intelligent human behavior. Through AI, machines can analyze images, comprehend speech, interact in natural ways, and make predictions using data.” [17]: technology-centric perspective. – Die Microsoft AI Internetseite [18] „AI for Good“ zeigt hingegen eine eher human-centric oder collective-intelligence perspective.

Google CEO: “At its heart, AI is computer programming that learns and adapts. It can’t solve every problem, but its potential to improve our lives is profound. At Google, we use AI to make products more useful—from email that’s spam-free and easier to compose, to a digital assistant you can speak to naturally, to photos that pop the fun stuff out for you to enjoy.” [19]: collective-intelligence perspective

Die Internetseite von google [20] und diejenige von meta/facebook [21] lassen eine Mischung aus technology-centric- und collective-intelligence-perspective erkennen.

Die OECD hat im Jahre 2019 ihr Dokument „Artificial Intelligence in Society“ vorgelegt, und definiert dort ihre human-centric perspective, die sie auch so nennt [22]: Hiernach müssen AI Systeme u.a. Menschenwürde und -rechte sowie die Demokratie gewährleisten, indem sie u.a. transparent, nachvollziehbar, vertrauenswürdig, sicher und steuerbar sind und bleiben. – Eine gestaltende Auseinandersetzung mit dem sozio-technischen System Mensch-Künstliche Intelligenz, im Sinne des Designs einer Governance, findet jedoch nicht statt.

Eine ähnliche Aussage ergibt sich für Deutschland: In [23] werden unter dem Titel „The making of AI Society: AI futures frames in German political and media discourses” die sogenannten „AI future frames“ für Deutschland untersucht. – AI future frames sind mentale Rahmen, in denen die AI Zukunft gesetzt wird. Das Ergebnis ist eher ernüchternd: „By mirroring the past in the future, alternative future visions are excluded, and past and current assumptions, beliefs, and biases are maintained. Despite the allegedly disruptive potential of emerging AI.” Hiernach denkt die deutsche Politik die neoliberale Politik der letzten Jahrzehnte unter dem Label „AI Made in Germany“ oder AI German einfach fort: „successful innovation = welfare generating future = political stability“. Die Lippenbekenntnisse der deutschen politischen Administration bis zur Wahl 2021 sind human-centric; im Tun überlassen sie die AI Governance dem Markt und eine AI Ethik explizit den deutschen Industrieunternehmen. – Eine entsprechende politische Governance, die den zentralen Aussagen in [1] Rechnung trägt, gibt es nicht. – Eine Einbettung in eine europäische AI Strategie fehlt völlig!

Die EU Kommission hat letztes Jahr in [24] einen Vorschlag für ein Regulationspapier erstellt, das in erster Linie als harmonisierende Referenz für die EU Administration dienen soll: Ein seitenstarkes Papier mit vielen Details; ich vermisse mal wieder ein Großes Bild, das zu einem Collective Mind in der EU (Administration) führen könnte. 

Wie könnten die Eckpfeiler eines Großen Bildes einer AI bzw. HCI Governance aussehen? Hier ein Vorschlag:

Rahmenparameter:

Landesspezifische AI Governance Systeme sind in eine europäische AI Governance eingebettet. – Die Strukturen der AI Governance sind auf allen europäischen Ebenen ähnlich. – Die (europäische) AI Governance folgt in ihrer Struktur einer Ziel-Hierachie: Vom Großen Bild zum Detail. Der transformative Charakter der AI Governance ist in die Governance einer ökologisch-ökonomischen Transformation (u.a. Nachhaltigkeit für Natur, Tier und Mensch, hin zu einer an sozialer Gerechtigkeit und Gleichheit orientierten Ökonomie, die Wachstum nicht als Allheilmittel verkauft) eingebettet

Kontrollparameter:

Die Kontrollparameter orientieren sich an den zentralen Aussagen aus [1]: Eine europäische AI Ethik und Gesetzgebung sorgt für eine Regulation der AI Freiheiten. Die AI Ethik und Gesetzgebung wird von der Politik gestaltet. Z.B. heißt dies, dass der Wert AI Transparenz politisch definiert wird und gesetzlich verankert wird.- Dies könnte zum Beispiel heißen, dass AI Systeme in Europa vor staatlichen Organen nach Bedarf offengelegt werden müssen.

Da AI Systeme unsere Welt transformieren, ist es notwendig dafür zu sorgen, dass die Schere zwischen AI-Wissenden und AI-Nichtwissenden nicht zu einer Verschärfung von Ungleichheit führt. Ein entsprechendes Bildungskonzept ist notwendig: AI gehört als Pflichtfach in die Schulen und AI gehört in die Curricula aller universitären Disziplinen.

Ordnungsparameter:             

Als Großes Bild für den Ordnungsparameter schlage ich vor „European Ecosystem for Hybrid Collective Intelligence“. Die Ausgestaltung dieses Großen Bildes heißt u.a. dass neben einer gemeinsamen europäischen AI Governance eine gemeinsame AI Infrastruktur aufgebaut wird. – Es werden Mechanismen bereitgestellt, die das Silo-Denken und -Handeln von Industrie und politischen Administrationen auflösen. U.a. wird eine „AI für Jedermann“ aufgebaut und die die obigen drei Sichten human-centric, technology-centric und collective intelligence integriert: Die sozio-technische HCI Integration wird also bewusst europäisch gestaltet.  

 

[1] Kissinger H A, Schmidt E, Huttenlocher D (2021) The Age of AI: And Our Human Future, kindle edition
[2] Dominik Dellermann, Adrian Calma, Nikolaus Lipusch, Thorsten Weber, Sascha Weigel, Philipp Ebel (2021) The future of human-AI collaboration: a taxonomy of design knowledge for hybrid intelligence systems, arXiv.org > cs > arXiv:2105.03354
[3] Dragos‑Cristian Vasilescu, Michael Filzmoser (2021) Machine invention systems: a (r)evolution of the invention process?, Journal AI & Society, January 2021
[4] Phanish Puranam (2021) Human–AI collaborative decision‑making as an organization design Problem, Journal of Organization Design (2021) 10:75–80
[5] Alex Wissner-Gross (2022) A new equation for intelligence, https://www.youtube.com/watch?v=auT-pA5_O_A, march 2020, zugegriffen am 07.02.2022
[6] Ron Schmelzer (2022) https://www.forbes.com/sites/cognitiveworld/2020/02/27/cant-define-ai-try-defining-intelligence/?sh=6f658a955279, Forbes Blog February 2020, zugegriffen am 07.02.2022
[7] Bernard Marr (2022) The Key Definitions Of Artificial Intelligence (AI) That Explain Its Importance, Forbes Blog February 2018, https://www.forbes.com/sites/bernardmarr/2018/02/14/the-key-definitions-of-artificial-intelligence-ai-that-explain-its-importance/?sh=219cbb1f4f5d , zugegriffen am 07.01.2022
[8] Wikipedia (2022) Artificial Intelligence, https://en.wikipedia.org/wiki/Artificial_intelligence, zugegriffen am 07.02.2022
[9] Peeters M M M, van Diggelen J, van den Bosch K, Bronhorst A, Neerinex M A, Schraagen J M, Raaijmakers S (2021) Hybrid Collective Intelligence in a Human-AI Society, in AI & Society Journal, March 2021
[10] Roberts H, Cowls J, Hine E, Mazzi E, Tsamados A, Taddeo M, Floridi L (2021) Achieving a ‘Good AI Society’: Coparing the Aims and Progress of the EU and the US, SSRN Journal, January 2021
[11] Kurzweil R (2022) https://www.kurzweilai.net/, zugegriffen am 07.02.2022
[12] Singularity University (2022) https://www.su.org/ , zugegriffen am 07.02.2022
[13] Krijger J (2021) Enter the metrics: critical theory and organizational operationalization of AI ethics, Journal AI & Society, September 2021
[14] Oswald A (2022) The Whole – More than the Sum of Its Parts! Self-Organization – The Universal Principle! in Ding R, Wagner R, Bodea CN (editors) Research on Project, Programme and Portfolio Management – Projects as an Arena for Self-Organizing, Lecture Notes in Management and Industrial Engineering, Springer Nature
[15] IBM (2022) Artificial Intelligence, https://www.ibm.com/cloud/learn/what-is-artificial-intelligence, zugegriffen am 07.02.2022
[16] Microsoft (2022) Künstliche Intelligenz, https://news.microsoft.com/de-at/microsoft-erklart-was-ist-kunstliche-intelligenz-definition-funktionen-von-ki/, zugegriffen am 07.02.2022
[17] Microsoft (2022) Artificial Intelligence Architecture, https://docs.microsoft.com/en-us/azure/architecture/data-guide/big-data/ai-overview, zugegriffen am 07.02.2022
[18] Microsoft (2022) AI for Good, https://www.microsoft.com/en-us/ai/ai-for-good, zugegriffen am 07.02.2022
[19] Sundar Pichai (2022) AI at Google: our principles, https://www.blog.google/technology/ai/ai-principles/, Blog of CEO google, june 2018, zugegriffen am 07.02.2022
[20] Google (2022) Google AI: Advancing AI for everyone, https://ai.google/, zugegriffen am 07.02.2022
[21] Meta AI (Facebook) (2022) Bringing the world closer together by advancing AI, https://ai.facebook.com/, zugegriffen am 07.02.2022
[22] OECD (2019) Artificial Intelligence in Society, Online Version, https://www.oecd-ilibrary.org/sites/eedfee77-en/index.html?itemId=/content/publication/eedfee77-en&_csp_=5c39a73676a331d76fa56f36ff0d4aca&itemIGO=oecd&itemContentType=book
[23] Köstler L, Ossewaarde R (2020) The making of AI Society: AI futures frames in German political and media discourses, in AI & Society Journal, February 2021, Springer Nature
[24] Europäische Kommission (2021) Proposal for a REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL LAYING DOWN HARMONISED RULES ON ARTIFICIAL INTELLIGENCE (ARTIFICIAL INTELLIGENCE ACT) AND AMENDING CERTAIN UNION LEGISLATIVE ACTS, https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:52021PC0206, zugegriffen am 07.02.2022

Metabetrachtungen: Zur Schnittmenge von diesjährigem Physik-Nobelpreis, Künstlicher Intelligenz und Collective Mind

Dieses Jahr wurde der Physik-Nobelpreis unter dem gemeinsamen Label „For groundbreaking contributions to our understanding of complex physical systems.“ an die Physiker Klaus Hasselmann und Syukuro Manabe sowie Giorgio Parisi vergeben. Es ist meines Wissens das erste Mal, dass das Verstehen von komplexen physikalischen Systemen so explizit honoriert wurde. Alle drei Forscher haben den Einfluss von mikroskopischen Zuständen auf makroskopische Zustände untersucht. Bei Klaus Hasselmann ging es um die Auswirkung von (lokalen) Wetterphänomenen auf (globale) Klimaphänomene. Also dem zentralen Problem unserer Tage. Syukuro Manabe wurde für die erstmalige computergestützte globale Klima-Modellierung geehrt.

Giorgio Parisi hat den Nobelpreis für seine Untersuchung von Spingläsern, insbesondere für seinen „great leap  … to introduce a new order parameter“ erhalten [1]. Seine Arbeiten ziehe ich für meine Metabetrachtungen heran.

Spin Gläser sind u.a. Legierungen wie CuMn, wobei das nichtmagnetische Kupfer (Cu) magnetisches Mangan (Mn) mit ca. 13% enthält. Die magnetischen Momente (Spin‘s) der Manganatome sind zufällig, aber fest im Kupferkristall verteilt. Zwischen den Manganatomen können ferromagnetische und antiferromagnetische Wechselwirkungen auftreten. – Je nach Konfiguration der Manganatome müssen diese mit ihren Nachbar-Manganatomen sowohl eine ferromagnetische als auch eine antiferromagnetische Wechselwirkung „befriedigen“. Dies kann auch Atome „frustrieren“. – Spingläser, also Substanzen, die bezüglich des Spins, wie Glas, amorphe Konfigurationen aufweisen und Frustrationen ausbilden, zeichnen sich (oft) nicht mehr nur durch einen einfachen Ordnungsparameter, wie die makroskopische Magnetisierung aus. – Sondern sie bilden viele mikroskopische Zustände aus, die mit dem Einstellen bestimmter Parameter (Rahmen- und Kontrollparameter) zu vielen unterschiedlichen Phasen mit jeweils unterschiedlichen Ordnungsparameter-Ausprägungen führen. Diese Ordnungsparameter-Ausprägungen genügen jedoch einem einheitlichen mathematischen Muster. – Parisi hat dieses „new order parameter“ Muster eingeführt [2].

Ich will versuchen dieses Muster am Beispiel einer sozialen Gruppe, an einem Team, zu erläutern.- Für den ein oder anderen mag dies Physikalismus sein [3], also der Versuch Alles und Jedes mittels Physik zu erklären; für mich ist es das Denken in Modellen und Theorien; und Metabetrachtungen helfen das ein oder andere qualitativ und quantitativ viel besser zu verstehen: Im Management 4.0 modellieren wir zentrale menschliche Eigenschaften mit der sogenannten Dilts Pyramide. Die Dilts Pyramide integriert hierbei ca. 30 unsere Persönlichkeit bestimmende Eigenschaften (Vision, Mission, Zugehörigkeit, Temperament, Werte, Glaubenssätze, Grundannahmen und Prinzipien). Stellen wir uns für den Moment die Pyramide (sie ist ja ein Keil, eine Spitze) als eine Ausrichtung unserer Persönlichkeit vor. Bilden wir eine Gruppe aus Personen mit unterschiedlichen Dilts Pyramiden, so bildet die Gruppe nicht selten (am Anfang) eine „Diltsglas-Organisation“: Die Pyramiden zeigen alle in unterschiedliche Richtungen. Recht selten geschieht es, dass die Pyramiden eine gemeinsame Ausrichtung erfahren, das Team sich also einen Ordnungsparameter, den Collective Mind, erarbeitet. Sehr oft führt die Gruppendynamik in einem Projektteam zu unterschiedlichen Kommunikationskonfigurationen (Zuständen): Unterschiedliche Visionen, Werte oder Glaubenssätze tauchen auf, nicht selten bleiben diese nebeneinander bestehen, ohne dass dies für die Gruppenmitglieder wirklich transparent wird. Damit verbunden sind, wie wir wahrscheinlich alle wissen, auch Frustrationen. Die Kommunikationskonfigurationen sind jedoch nicht beliebig. Die verschiedenen konfigurationsspezifischen Ausrichtungen der Dilts Pyramide der einzelnen Gruppenmitglieder haben nichtverschwindende „Überlappe“, z.B. mögen bestimmte Werte oder Glaubenssätze in verschiedenen Konfigurationen auftauchen. – Sie wirken als „mikroskopische“ Ordnungsparameter, die die makroskopische (Un-) Ordnung bestimmen. Man könnte also einen neuen Ordnungsparameter einführen, der den „Überlapp“ bei allen Teammitglieder misst und aufsummiert. – Damit hat man auch ein Maß für die „Diltsglas-Organisation“ des Teams. – Dieses Vorgehen entspricht dem von Parisi eingeführten neuen Ordnungsparameter für Spingläser. – Der Ordnungsparameter der „Diltsglas-Organisation“ ist damit auch ein Maß für die „Abweichung“ von einem einfachen Ordnungsparameter, dem Collective Mind, bei dem alle Dilts Pyramiden im Rahmen der Teamaktivitäten in eine Richtung zeigen.

Man kann die Analogie noch erweitern: Physikalische Spingläser können durch äußere magnetische Felder in der Ausbildung des Parisi-Ordnungsparameters beeinflusst werden. Auch „Diltsglas-Organisationen“ zeigen ein ähnliches Verhalten, wenn eine (äußere) Beeinflussung einsetzt: Führungskräfte oder Coaches wirken auf die Dilts Pyramiden des Teams ein. – Bei kleinen Einflussnahmen bleibt das „Diltsglas“ erhalten, steigt die Einflussnahme entsteht eine Ausrichtung, die aussieht wie ein Collective Mind. In den meisten Fällen dürfte die Ausrichtung jedoch wieder verschwinden, wenn die Einflussnahme zurückgeht, falls sich bis dahin keine intrinsische Veränderung im Team ausgebildet hat.  

Alles schön und gut, könnte man sagen: Warum macht es Sinn sich mit solchen Metabetrachtungen zu beschäftigen. In der Schrift des Nobel-Komitees [1] wird die Antwort gegeben. Die Modelle zur Erklärung von Spin-Gläsern haben heute sehr viele unterschiedliche Bereich erheblich befruchtet: Verschiedene Gebiete der Physik, der Biologie, der Chemie, der Neurowissenschaften und der Künstlichen Intelligenz. Für die Verbindung von Neurowissenschaften und Systemen Künstlicher Intelligenz wird explizit die Arbeit von John J. Hopfield in [1] genannt. Neuronale Netzwerke können auch als Spinglas Systeme verstanden werden, wenn man die magnetischen Momente durch Neuronen ersetzt. Die Wechselwirkungsparameter zwischen den Spins entsprechen den Gewichten zwischen den Ausgängen einer Neuronen Schicht und den Eingängen der nächsten Neuronen Schicht. Angelegte magnetische Felder entsprechen den Bias-Einstellungen der Neuronen. – Und wie oben geschildert, kann man die Grundprinzipien auch auf soziale Gruppen übertragen.

Die GPM Fachgruppe Agile Management beschäftigt sich seit einem Jahr mit der Nutzung von KI-Systemen im Management 4.0. Insbesondere habe ich mir hierzu zwei Themen ausgesucht:

  • Die Nutzung eines Neuronalen Netzwerkes für die Ermittlung von Persönlichkeitsmerkmalen aus beobachteten Verhaltensweisen.
  • Die Ermittlung des Grades der „Diltsglas-Organisation“ (wie oben geschildert) und des Collective Minds eines Teams aus auditiven Gesprächsprotokollen.

Den technologischen Durchstich für die erste Aufgabe konnte ich inzwischen erfolgreich abschließen. Ich bin also optimistisch, dass ich meine nächsten Blogbeiträge der Ausgestaltung dieser beiden Themen widmen werde. 

           

[1] The Nobel Committee for Physics (2021) For groundbreaking contributions to our understanding of complex physical systems, Scientific background on the Nobel Prize in Physics 2021.

[2] Parisi G (2008) The physical Meaning of Replica Symmetry Breaking, arXiv

[3] Wikipedia (2021) Physikalismus, https://de.wikipedia.org/wiki/Physikalismus_(Ontologie), zugegriffen am 29.10.2021

[4] Hopfield J.J. (1982) Neural networks and physical systems with emergent collective computational abilities, Proc. Nat. Acad. Sci. USA, Vol. 79 Biophysics

Metabetrachtungen: Zur Schnittmenge von Intuitivem Bogenschießen, Künstlicher Intelligenz und Management 4.0

Ende letzten Jahres habe ich einen WDR-Fernseh-Beitrag zur Bogenwerkstatt gesehen [1]. Dieser Beitrag hat meine verschüttete Kindheitsleidenschaft zum Bogenschießen wieder offengelegt. Seither übe ich mich mit großer Freude im sogenannten Intuitiven Bogenschießen [2]. Beim Intuitiven Bogenschießen bringt allein das „Körpergefühl und die Erfahrung des Schützen den Pfeil ins Ziel – rein intuitiv ohne Zieltechnik“. Intuitives Bogenschießen hat eine recht große Nähe zum japanischen Zen-Bogenschießen. – Das Buch des Philosophen Eugen Herrigel, der nach sechs! Jahren harten Übens (genüsslich zu lesen) seine Zen Bogenschieß-Prüfung ablegte gibt u.a. einen wunderbaren Eindruck von der Aussage „rein intuitiv ohne Zieltechnik“. – Die Fähigkeit sich an unterschiedliche Kontexte anzupassen, wird insbesondere beim 3D-Parcours Schießen im Gelände besonders herausgefordert.

Intuitives Bogenschießen wird auch als therapeutisches Bogenschießen in Kliniken eingesetzt. – Fokus, Adaption und Intuition sind zentrale Elemente des Intuitiven Bogenschießens. – Die begriffliche Nähe zum Management 4.0 ist offensichtlich. Ich werde später aufzeigen, dass auch eine Schnittmenge zur Künstlichen Intelligenz mittels Deep Learning gegeben ist.

Vor kurzem hatte ich die Gelegenheit und das Glück an einem dreitägigen Kurs zum Thema Deep Learning mittels Tensorflow teilzunehmen [4]. Tensorflow ist die von google u.a. über colab.research.google.com zur Verfügung gestellte Plattform für das Erstellen von Deep Learning Systemen der Künstlichen Intelligenz. – Das Eintauchen in diese und weitere Plattformen des Machine Learnings (ML) ist überwältigend: Es ist kein Programmieren mehr im mir bisher bekannten Sinne, sondern entspricht eher dem Design und Konfigurieren von Systemen auf sehr hohem Abstraktionsniveau. – Den erreichten (globalen) Fortschritt im ML konnte ich mir bisher in dieser nahezu „unendlichen Fülle“ nicht vorstellen. Deep Learning ist eine Form von technischer Selbstorganisation – das Design und die Konfiguration dienen der Ausgestaltung der Selbstorganisationsparameter des neuronalen Netzwerkes; und damit ist der Bezug zu Management 4.0 schon erkennbar.          

Vor einem Jahr haben wir in der Fachgruppe Agile Management eine Arbeitsgruppe ins Leben gerufen, die sich mit der Anwendung von Künstlicher Intelligenz im Projekt Management beschäftigt: Helge Nuhn hat kürzlich einen Übersichtsartikel zu Stand und Potential der Nutzung von Artificial Intelligence Systemen (AI Systemen) in temporären Organisationen und im Projekt Management erstellt [5].

In allen drei Bereichen – Intuitivem Bogenschießen, Künstlicher Intelligenz und Management 4.0 – ist Lernen das Schlüsselelement, um das System Mensch, das technische System Neuronales Netzwerk und das soziale System Team oder Organisation auf das Umfeld, also auf den jeweiligen Kontext, auszurichten.

In dem Standardwerk zu Machine Learning (ML) von Aurélien Géron charakterisiert er maschinelle Lernverfahren u.a. durch die Gegenüberstellung von Instanzbasiertem Lernen und Modellbasiertem Lernen: Instanzbasiertes Lernen ist dem Auswendiglernen sehr nahe. – Die Maschine lernt vordefinierte Objekt-Beispiele (Instanzen) einfach auswendig und wendet ein sogenanntes Ähnlichkeitsmaß zum Identifizieren von neuen Objekten (Instanzen) an. Ist die Ähnlichkeit hoch genug werden die neuen Objekte maschinell den vordefinierten Klassen zugeordnet. Instanzen können spezifische Kunden, Äpfel, eMails usw. sein. Das Ähnlichkeitsmaß wird über Regeln definiert und wird im „klassischen“ Sinne programmiert. – Die Regeln stellen eine äußerst einfache Form eines von außen (durch den Programmierer) vorgegebenen Modells dar. Das eigentliche Modellbasierte Lernen funktioniert jedoch völlig anders: Einem System werden Beispieldaten übergeben und das System entwickelt hieraus ein Modell und dieses Modell wird zur Vorhersage verwendet. Das Modellbasierte Lernen ist also dem wissenschaftlichen Vorgehen bei der Entwicklung von Erkenntnissen nicht unähnlich. Deep Learning lässt sich nach dem mehr oder weniger an Selbständigkeit beim AI-Lernen unterscheiden: Supervised Learning, Unsupervised Learning und Reinforcement Learning.

Zwischen Instanzbasiertem Lernen und Modellbasiertem Lernen liegt ein fundamentaler Unterschied. – Dies wird in dem Moment offensichtlich, wenn ich die Verbindung zum Management 4.0 und dem Lernen im einfachen oder komplizierten Kontext und dem Lernen im komplexen Kontext ziehe. Das Instanzbasierte Lernen ist das Lernen an Best Practice, also an Beispiel-Objekten wie einem Beispiel-Projekt oder an einem Beispiel-Verfahren. Das Ähnlichkeitsmaß ist in diesem Fall die Nähe zur eigenen Praxis: Der Lernende sucht nach einem Projekt, das möglichst zu seiner bisherigen Praxis passt. Dies kann heißen, dass Beispiele aus anderen Branchen nicht akzeptiert werden, dass nur dann das Beispiel passt, wenn der Lernende davon ausgeht, dass im Best Practice ein ähnliches Mindset vorliegt oder dass der WIP (Work-in-Progress) wie in der eigenen Organisation ähnlich groß ist, usw…. In jedem Fall wird der Projektkontext des Best Practices nur ungenügend abgebildet, es findet keine oder eine nur sehr geringe Abstraktionsleistung statt und die Übertragbarkeit ist deshalb mehr als fraglich.

Lernen im Management 4.0 ist Modellbasiertes Lernen. Instanzen sind nicht die Basis des Lernens, allenfalls um zu zeigen, dass man mit dem Modell sehr gut Probleme (Instanzen) lösen kann, die man vorher noch nie gesehen hat. – Falls das Modell jedoch nicht erfasst wird, erzeugt dies bei einem an Instanzbasiertes Lernen gewöhnten Menschen keine Erkenntnis: Da das Modell sich nicht erschließt, erschließt sich auch nicht die Lösung; Modell und Lösung sind unpraktisch.         

Mit dieser Erkenntnis sehr eng verbunden ist das sogenannte „Overfitting“ im ML: Man kann ein Neuronales Netz extrem gut mit einem gewaltig großen Datensatz (zum Beispiel Tier-Bildern) trainieren. – Die ermittelte Trefferrate ist fantastisch, so lange Bilder aus dem Trainingsdatensatz verwendet werden. – Trotzdem versagt das Netz bei einem bisher unbekannten Bild die Hundeart Spitz zu erkennen, und verortet den Spitz als Tyrannosaurus Rex. Der Kontext in dem der Spitz gezeigt wurde, war anders als bei den Trainingsdaten: Das AI-System konnte aufgrund der geringen Datenvariabiltät kein hinreichend abstraktes Modell ausbilden, um den Spitz in einem andersartigen Kontext zu erkennen. – Das Modell war sozusagen im Instanzbasierten Lernen hängen geblieben.

Beim Bogenschießen machte ich eine ähnliche Erfahrung im Selbsttraining: Ich stellte mich mit sehr vielen Schüssen (und ich meine hunderte, wenn nicht tausende Schüsse) auf einen bestimmten Kontext ein und die Trefferrate war sehr gut! – Eugen Herrigel beschreibt in seinem Buch wie er 4 Jahre aus einem Meter Distanz zum Ziel die Rituale des Zen-Bogenschießens einübt, um dann ad hoc mit einer 60 Meter Distanz konfrontiert zu werden, an der er über Monate kläglich scheiterte.

Bogenschießen unterliegt vielen, wahrscheinlich einigen hundert Parametern: Einer der offensichtlichen Kontext-Parameter ist die Entfernung zum Ziel. Änderte ich in der Anfangszeit die Entfernung ging meine Trefferrate deutlich runter. Ich hatte meine Intuition, mein Gehirn (d.h. mein neuronales Netzwerk), mittels Instanzbasiertem Lernen trainiert. Mit der Hinzunahme weiterer Entfernungen im 3D-Parcours wurde meine Trefferrate immer schlechter, um nicht zu sagen chaotischer. Mein Gehirn hat es aufgrund der vielen Parameter nicht geschafft, von allein eine Intuition, also ein mentales Modell, auszubilden, das mir zu einer besseren Trefferrate verhilft. Bei künstlichen Neuronalen Netzwerken hat man eine ähnliche Beobachtung gemacht: AI-Systeme können ebenfalls „Frustration“ ausbilden, sei es, dass sie in einem System-Zustand verharren oder „chaotische“ Reaktionen zeigen.  

Die Trefferrate wurde erst wieder deutlich besser als ich meiner Intuition auf die Sprünge half. Ich dachte mir ein einfaches Modell aus: Dieses Modell beruht auf der Erkenntnis, dass der Pfeilflug eine Wurfparabel beschreibt. Man spricht auch von ballistischem Schießen. Ist die Distanz gering (ca. 20 m) merkt man vielfach nichts von dieser Wurfparabel. – Vielfach bedeutet, dass die anderen Parameter, wie zum Beispiel Pfeilgewicht, Bogenstärke, usw. dies ermöglichen. Im Falle meines Bogens und meiner Pfeile wird die Wurfparabel ab 20 m immer stärker sichtbar. Das Modell lautet aktuell: Richte den Pfeil in einer geraden Linie auf das Ziel aus, auch wenn es 30 oder 40 Meter entfernt ist, schätze die Entfernung und hebe den Bogen in Abhängigkeit von der Entfernung leicht an. Leicht anheben bedeutet maximal 1-2 Winkelgrad. – Ein Winkelgrad kann durchaus im Ziel eine Abweichung von 50 cm oder mehr hervorrufen. – Also eine ziemliche Anforderung an Intuition und Motorik. Seit ich mit diesem Modell (das noch etwas umfangreicher ist, und weitere Parameter wie zum Beispiel das Pfeilgewicht berücksichtigt) schieße, hat sich die Trefferrate wieder deutlich verbessert und meine Adaptionsfähigkeit ist wesentlich gestiegen.      

Der Neurobiologe Henning Beck beschreibt in [7] wie unser Hang zur Ordnung im Lernen, also zum Instanzbasierten Block-Lernen uns „behindert“:

„Stellen Sie sich vor, Sie sind Lehrer an einer Kunstschule und wollen Ihren Kursteilnehmern den typischen Malstil von van Gogh, Monet und Cezanne vermitteln, wie gehen Sie vor? Oder umgedreht gefragt: Sie sollen für eine Prüfung lernen, was das Typische an den Bildern der drei Künstler ist, was würden Sie tun? Würden Sie sich Bilder der Maler anschauen? Ins Museum gehen, die Bilder vielleicht sogar nachmalen? …

…Eine Gruppe lernte genau nach obiger Blockabfertigung: Zunächst sah man sich eine Reihe von Bildern des ersten Künstlers an, machte dann eine kurze Pause, bevor die Bilder des Künstlers Nummer zwei folgten. Bei der anderen Gruppe machte man etwas anderes: Man zeigte die Bilder aller Künstler durcheinandergemischt, machte dann eine Pause und zeigte anschließend eine neue Runde durchmischter Bilder. Was für ein heilloses Durcheinander! So verliert man doch total den Überblick! …

…Das Ergebnis der Studie war jedoch erstaunlich: Ging es in dem anschließenden Test darum, ein zuvor gezeigtes Bild zu erkennen, dann schnitt die erste Gruppe, die blockweise gelernt hatte, besser ab. Ging es jedoch darum, ein neues, zuvor nicht gezeigtes Bild korrekt zuzuordnen, dann war Gruppe zwei mit den durchmischten Bildern besser. Denn diese Gruppe hatte die Bilder nicht nur auswendig gelernt, sondern auch das Typische der Malstile verstanden…

…Im obigen Malstilexperiment gaben drei Viertel der Teilnehmer an, das blockweise Lernen führe zu einem besseren Verständnis der Malstile – selbst nachdem man den finalen Test gemacht hatte, war die Mehrheit überzeugt, weiterhin blockweise lernen zu wollen.“

Ich habe Henning Beck hier so ausführlich zitiert, weil ich das „…Durchmischen von Lerninhalten, …das „Interleaving“…“ seit vielen Jahren in meinen Management 4.0 Trainings anwende und auch dort die Erfahrung mache, dass 50-75% der Teilnehmer das Block-Lernen bevorzugen. – Wie oben geschildert, geht blockweises Lernen mit dem Unvermögen einher, mentale Modelle zu erstellen, die sich auf neue Kontexte adaptiv einstellen. – Dies ist eine zentrale Fähigkeit um Komplexität zu meistern, also dem Handeln unter Unsicherheit und Unüberschaubarkeit.   

Meine Erfahrungen, sei es im Selbst-Training beim Bogenschießen, beim Erstellen von AI-Systemen oder in meinen Management 4.0 Trainings, zeigen, dass die Schnittmenge in diesen drei vordergründig disjunkten Bereichen keineswegs Null ist. – Die hier skizzierten Metabetrachtungen helfen, Einzel-Disziplinen besser zu verstehen, vernetzte Erkenntnisse zu gewinnen und Meta-Lernen anzuregen.

 

[1] Hörnchen D (2021) Die Bogenwerkstatt, https://www.die-bogenwerkstatt.de/, zugegriffen am 15.09.2021

[2] Wikipedia (2021) Traditionelles Bogenschießen, https://de.wikipedia.org/wiki/Traditionelles_Bogenschie%C3%9Fen, zugegriffen am 15.09.2021

[3] Herrigel E. (2010) Zen in der Kunst des Bogenschießens

[4] Zeigermann O (2021) Introduction Deep Learning to Deep Learning with Tensorflow 2, zeigermann.eu, embarc.de/oliver-zeigermann, ein Training der oose.de

[5] Nuhn H (2021) Organizing for temporality and supporting AI systems – a framework for applied AI and organization research, Lecture Notes in Informatics, GI e.V

[6] Géron A (2020) Praxiseinstieg Machine Learning mit Scikit-Learn, Keras und Tesnorflow, O’Reilly, 2. Auflage

[7] Beck H (2021) Die Crux mit der Ordnung, in managerSeminare 276, März 2021, https://www.managerseminare.de/ms_Artikel/Schlauer-lernen-Die-Crux-mit-der-Ordnung,281117, zugegriffen am 15.09.2021

Management 4.0 und Megatrends: Konnektivität, New Work, Wissenskultur

Vor Kurzem haben sich die Fachgruppenleiter der GPM Deutschen Gesellschaft für Projektmanagement getroffen. Ein wesentlicher Arbeitsschwerpunkt war die Auswirkungen der Megatrends für das Projektmanagement. Von den vom Zukunftsinstitut definierten Megatrends [1] werden insbesondere die Megatrends Konnektivität, New Work und Wissenskultur als wichtig für das Projektmanagement wahrgenommen.

Das Zukunftsinstitut schreibt hierzu [1]:

„Konnektivität ist der wirkungsmächtigste Megatrend unserer Zeit. Das Prinzip der Vernetzung dominiert den gesellschaftlichen Wandel und eröffnet ein neues Kapitel in der Evolution der Gesellschaft. Digitale Kommunikationstechnologien verändern unser Leben grundlegend, reprogrammieren soziokulturelle Codes und lassen neue Lebensstile und Verhaltensmuster entstehen. Um diesen fundamentalen Umbruch erfolgreich zu begleiten, brauchen Unternehmen und Individuen neue Netzwerkkompetenzen und ein ganzheitlich-systemisches Verständnis des digitalen Wandels.

…New Work beschreibt einen epochalen Umbruch, der mit der Sinnfrage beginnt und die Arbeitswelt von Grund auf umformt. Das Zeitalter der Kreativökonomie ist angebrochen – und es gilt Abschied zu nehmen von der rationalen Leistungsgesellschaft. New Work stellt die Potenzialentfaltung eines jeden einzelnen Menschen in den Mittelpunkt…

Der Megatrend Wissenskultur wirkt ungebrochen. Insbesondere das Zusammenspiel mit dem Megatrend Konnektivität verändert unser Wissen über die Welt und die Art und Weise, wie wir mit Informationen umgehen. …Komplexere, unvorhersehbare Anforderungen auf dem Arbeitsmarkt und neue, kollaborative Formen der Wissensaneignung verlagern zudem den Fokus: hinzu lebenslangem Lernen…“

Zur Wissenskultur gehört das Thema Lernen und hier insbesondere die durch die Digitalisierung noch zu erwartenden Veränderungen. Ich war deshalb im Januar auf der LearnTec in Karlsruhe [2]. Schwerpunkt auf dieser Konferenz und Messe ist das Thema Digitalisierung des Lernens. Zu den digitalen Techniken gehören Lernmanagementsysteme, Augmented Reality, Virtual Reality, Diverse Chat Bot Techniken, Sprachübersetzungstechniken sowie Spiele, die Lernen unterstützen (Gamification). Die LearnTec Messe hatte dieses Jahr in Karlsruhe zwei große Hallen belegt und nächstes Jahr soll alleine für den Bereich Schule eine Halle neu hinzukommen.

Auf der Konferenz war Artifical Intelligence das dominante Thema. – Bei den Ausstellern auf der Messe war es noch nicht wirklich ein Thema. Verschiedene Vortragende waren sich einig, dass AI based learning in den nächsten Jahren kommen wird. – Hierzu zählen dann auch Training Bots und Coaching Bots. Für eine Zusammenstellung von Unternehmen, die hier an vorderster Front sind, verweise ich auf [3]. Das Thema Smart Learning Environment geht noch einen Schritt weiter: Lernräume werden mit Sensoren und Actoren ausgestattet, die das Lernen über von digitalen Systemen wahrgenommene Verhaltensweisen ( z.B. längeres Verweilen bei einem Satz oder (Fremd-) Wort, Augenbewegungen, Hautfärbung oder ähnliches) monitoren, den Lernenden auf dieser Basis individuell führen und dem Lehrer, Trainer oder Coach über People Analytics Informationen Eingriffsmöglichkeiten geben.

Bosch arbeitet an entsprechenden Lernumgebungen und von der TU Kaiserlautern wurde ein sehr beeindruckender Prototyp für das multimediale Lernen im Physikunterricht vorgestellt. – Je nachdem was die Sensoren mittels KI ermitteln, stellen Actoren die Lerninhalte ad hoc zusammen. Der Lehrer oder Trainer kann eingreifen, muss es aber nicht. Zusätzlich werden Informationen zu typischen Lernmustern aller Lernenden bereitgestellt.

Mittels „Leuchtürmen“, sogenannten Beacons oder Beacon-ähnlicher Technologie können Räume weiter smart gemacht werden. – Dies erlaubt u.a. die individuelle oder projektspezifische Bereitstellung von Informationen sobald Räume betreten oder verlassen werden [4].

Interaktionsräume für agile Projektteams könnten mit ähnlichen Techniken entsprechend weiter „aufgerüstet“ werden. – Ähnliche Ideen hierzu sind im Bereich People Analytics schon relativ alt (man siehe hierzu meinen Blog [5]), erfreuen sich aber in Datenschutz-orientierten Gesellschaft bisher (noch!) weniger Freunde.- Auch hier werden sich vermutlich Smart Working Environments oder Smart Project Environments etablieren. – Spätestens hier muss klar werden, dass Datenschutzgesetze alleine nicht ausreichen, sondern eine ganzheitliche Ethik gefordert ist, die nicht auf „Verliebtsein in Innovation, Erfolg und Geld“ ausgerichtet ist.

Der Jobfuturomat des Instituts für Arbeitsmarkt- und Berufsforschung der Bundesagentur für Arbeit [6] weist für Projektleiter einen Digitalisierungsanteil von ca. 33 % aus, für Manager einen Anteil von 25%. Details der Analyse sind leider nicht transparent verfügbar. – So wird nicht wirklich klar, ob damit z.B. 33% der Projektleiteraktivitäten durch die Digitalisierung ersetzt wird oder 33% durch die Digitalisierung verändert wird. – Es ist von Automatisierung die Rede.
Mediatoren, Verhaltenstrainer/Kommunikationstrainer sollen hiernach einen Digitalisierungsgrad von 0% haben. – Die LearnTec lässt auch für diese letzte Berufsgruppe vermuten, dass sich das Berufsbild auch dieser Gruppe durch die Digitalisierung völlig verändern wird und enorme Möglichkeiten der Machtausübung damit verbunden sind.

Damit die Digitalisierung, wie Scobel sagt, nicht zu einer weiteren Entfremdung führt [7] oder wichtige Techniken der Selbstführung, wie diejenige der Achtsamkeit oder Meditation missbraucht werden [8], ist es notwendig, die Megatrends durch eine tiefgreifende Werteorientierung oder Ethik zu regulieren. Unreguliert führen sie zu vermeintlich schönen Hüllen: New Work ist nämlich nicht in erster Linie die Gestaltung von neuen mobilen, smarten oder work-life-balance Arbeitsumgebung, sondern wie wir im Management 4.0 sagen, eine an den menschlichen Grundbedürfnissen ausgerichtet Arbeit, bei der die Sinnfrage in jeder Hinsicht den nachhaltigen Bezugsrahmen setzt. – Im vorherigen Blog habe ich hierfür den Begriff Glück verwendet. – Unternehmen, die die Systemparameter des Unternehmens nicht so ausrichten, dass sie damit aktiv zum Glück der Mitarbeiter beitragen, praktizieren kein New Work [9,10].

Deshalb praktizieren Fluide Organisationen 4.0 Selbstorganisation und! wollen sich bewusst in Richtung einer Ethik mit türkisenen value-Memen entwickeln (d.h. insbesondere: ganzheitlich, nachhaltig, menschlich, naturverbunden). Man siehe hierzu meinem Blog [11] und auch den Beitrag „Interaction Patterns for the Digital Transformation“ in [9].

Schon Marx hat die Mechanismen der Selbstorganisation erkannt [12] und diagnostiziert, dass diese Mechanismen im 19ten Jahrhundert nicht an den menschlichen Grundbedürfnissen ausgerichtet waren. An verschiedenen Stellen im Blog habe ich darauf hingewiesen, dass die Selbstorganisation ein universelles Phänomen ist und damit nicht zwischen Gut oder Böse unterscheidet. Wie die Achtsamkeit auch, benötigt die Selbstorganisation eine Ethik.- Es ist also wichtig, zwischen der Selbstorganisation und einem ethischen Rahmen zu unterscheiden. Wenn wir von Selbstorganisation 4.0 sprechen, dann meinen wir eine Selbstorganisation, die auf den universellen Prinzipien beruht und die türkisenen value-Meme lebt. Diese Ethik wird umso wichtiger, als die Selbstorganisation mittels smarter Techniken unterstützt wird!

Wie ich im Blog über Davos [13] skizziert habe, sind meines Erachtens die Top-Führungskräfte der europäischen Unternehmen und Politik sowohl von dem Verständnis der Selbstorganisation als auch dem einer türkisenen Ethik sehr weit entfernt. Und damit schließt sich der Kreis wieder: Die Potentiale, die sich durch die Megatrends Konnektivität, New Work und Wissenskultur ergeben, können nicht gehoben werden. – Es besteht vielmehr das Risiko, dass die Megatrends unter diesen Bedingungen zur Gefahr für den gesellschaftlichen Zusammenhalt werden.   

 

[1] Zukunftsinstitut (2020) https://www.zukunftsinstitut.de/dossier/megatrends/, zugegriffen am 27.02.2020

[2] Leantec (2020) https://www.learntec.de/de/, zugegriffen am 27.02.2020

[3] AI in education (2020) https://builtin.com/artificial-intelligence/ai-in-education, zugegriffen am 27.02.2020

[4] Beacon (2020) https://de.ryte.com/wiki/Beacon, zugegriffen am 27.02.2020

[5] Oswald Alfred (2019) #PAFOWLondon – People Analytics & Future of Work – Deutschland, wo bist Du?, https://agilemanagement40.com/pafowlondon-people-analytics-future-of-work-deutschland-wo-bist-du

[6] Institut für Arbeitsmarkt- und Berufsforschung der Bundesagentur für Arbeit (2020) https://job-futuromat.iab.de/, zugegriffen am 27.02.2020

[7] Scobel Gert (2020) Marx – wie sieht Entfremdung heute aus?, https://www.youtube.com/watch?v=FWhszTgMdec, zugegriffen am 27.02.2020

[8] Scobel Gert (2020) Achtsamkeit kann auch gefährlich sein, https://www.youtube.com/watch?v=QukUtDNeQ1I, zugegriffen am 27.02.2020

[9] Oswald A, Müller (Hrsg.) (2019) Management 4.0 – Handbook for Agile Practices, Release 3, BoD Verlag, Norderstedt

[10] Lutze Matthias, Schaller Philipp D., Wüthrich Hans A. (2019) New Work, Zurück in die Zukunft der Motivation, Zeitschrift Führung +Organisation 6/2019

[11] Oswald Alfred (2019) Projekte neu gedacht: Entwicklungsstufen, Selbstorganisation und Co-Evolution, https://agilemanagement40.com/projekte-neu-gedacht-entwicklungsstufen-selbstorganisation-und-co-evolution, zugegriffen am 27.02.2020

[12] Oswald Alfred (2018) Karl Marx und die Theorie der Selbstorganisation, https://agilemanagement40.com/karl-marx-und-die-theorie-der-selbstorganisation

[13] Oswald Alfred (2020) Vom Davos-Kindergarten der Führung, oder…Vom Systemwandel und der globalen Revolution der Führung!, https://agilemanagement40.com/vom-davos-kindergarten-der-fuehrung-odervom-systemwandel-und-der-globalen-revolution-der-fuehrung, zugegriffen am 27.02.2020