Die UN-Generalversammlung hat das Jahr 2025 zum „Internationalen Jahr der Quantenwissenschaft und Quantentechnologien“ ausgerufen [1].
Das ist umso bemerkenswerter, wenn man bedenkt, dass Quantenwissenschaft und -technologie weit weg sind von unseren alltäglichen Erfahrungen und für die weit überwiegende Anzahl an Mensch wird dies auch (wahrscheinlich) so bleiben. Selbst für Physiker ist die Quantenphysik in weiten Teilen nicht wirklich verständlich, wenngleich die dazugehörige Mathematik die Quanten-Natur mit sehr hoher Präzision beschreibt.
Quantenwissenschaft und -technologie sind das ‚Tor zum Sein‘, denn unser Sein ist ein Quanten-Sein. Unter diesem Blickwinkel kann man verstehen, dass die UN-Generalversammlung gut daran getan hat ‚Quantum2025‘ auszurufen: Ich bin davon überzeugt, dass die kommenden Jahre, in denen Quantum Computing und Quantum Technology immer mehr zur Anwendung kommen, unser Verständnis vom Sein verändern werden. Die Welt steht an einer ähnlichen Schwelle, wie zum Zeitpunkt der Erfindung des Transistors. – Was das Verständnis des Seins anbetrifft, werden die Folge noch wesentlich transformativer sein: Wissenschaftliche und technologische Fortschritte in Allgemeiner Künstlicher Intelligenz und Quantentechnologien werden sich gegenseitig ergänzen. Diese neue Welt dürfte den meisten Menschen verschlossen bleiben, gleichwohl werden sie die Auswirkungen spüren.
Schon heute erfahren viele Menschen einen Kontrollverlust durch Globalisierung, Klimawandel, Migration, Corona, Künstliche Intelligenz, Anschläge und Terrorismus sowie Kriege. Als ‚Exit-Strategie‘, um aus diesem Mangel an Kontrolle und Klarheit herauszukommen, wird die Vereinfachung gewählt und von der Politik oft auch angeboten. Das Zukunftsinstitut nennt dies ‚Reverse Politics‘ [2]: Zurück zur Vergangenheit in Form von ‚Leave (Brexit)‘, ‚Make America Great Again‘, ‚Zeit für Deutschland‘, usw..
Die Quantenwelt ist genau das Gegenteil von Vereinfachung, sie ist die Welt der Unklarheit: Das Sein ist oft noch nicht festgelegt. – Quantum Computing nutzt genau dieses Nicht-Festgelegte und ‚rechnet‘ sogar damit! Es ist also nicht zu erwarten, dass unsere klassische Welt, in die die Quanten-Welt immer mehr durch Technologie ‚eindringt‘, an Klarheit gewinnt. Selbst wenn Themen wie Migration, Epidemien, Terrorismus und Krieg verschwinden sollten, so wachsen mit Allgemeiner Künstlicher Intelligenz und Quantentechnologien weitere Risikopotentiale für einen globalen Kontrollverlust heran.
Zur Zeit ist es möglich, von Künstlicher Intelligenz und Quantum Computing durch ein weitgehend offenes Ecosystem zu profitieren: Die Technologien sind (noch) offen verfügbar und Europa kann entsprechende US-Technologien einkaufen, wie unlängst das Forschungszentrum Jülich, das einen Quanten Computer von d-wave erstanden hat. Wenn ich bisher auf Quanten Computern ‚gerechnet‘ habe, so waren dies meist auch d-wave Systeme. Individuell kann man also (noch) entsprechenden Risikopotentialen durch Kontrollverlust entgegenwirken.
Meine Blog-Beiträge zu Künstlicher Intelligenz und Quantum Computing verbinden sehr oft Management Fragestellungen mit diesen beiden Technologien. Die Beiträge sind damit oft spekulativ, enthalten aus meiner Sicht jedoch gerade deswegen ein extremes Lernpotential. – Für mich auf jeden Fall – auch der interessierte Leser profitiert sicherlich von dieser ungewöhnlichen Kombination: Meines Erachtens wächst die Klarheit in der Management-Fragestellung und den verwendeten Technologien!
In den letzten Artikeln habe ich mich recht intensiv mit der Integrated Information Theory (kurz IIT) beschäftigt. Dies ist eine rein klassische Theorie. In diesem Beitrag stelle ich weitere Aspekte der schon in den letzten Beiträgen behandelten Quantum Collective Mind Theory (QCMT) vor, die in diesem Beitrag Elemente einer Quantum IIT enthält. Eine Quantum IIT gibt es in der Wissenschaft derzeit nicht.
Ich benutze wieder KI-Systeme als Assistenzsysteme einer hybriden Collective Intelligence. – Dies erfordert von den KI-Assistenzsystemen eine erstaunliche Leistung: Ausgezeichnete Kenntnisse in IIT und in der Quantenphysik und die Fähigkeit zwischen beiden doch sehr unterschiedlichen Wissensgebieten Zusammenhänge und Synergien zu erkennen. – U.a. sind klassische Konzepte der IIT, soweit sinnvoll, in quantenmechanische Konzepte umzusetzen.
Die Theorie und die dazugehörigen Python Programme für diesen Beitrag habe ich in der ersten Version mit ChatGPT o3-mini-high entwickelt. Dies ist eine schnelle ChatGPT Variante für wissenschaftliche Aufgabenstellungen und Softwareentwicklung. Anschließend habe ich o1 zum Überprüfen des mit o3-mini-high erstellten Codes verwendet und auch mit o1 fortgefahren. O1 hat hierbei zwei recht gravierende Fehler in den physikalischen Grundlagen gefunden. Ich wollte jetzt auch wissen, ob andere KI-Systeme diese Fehler finden und in der Lage sind, mir den Programmcode zu erläutern und ggf. eine korrigierte Version auszugeben. Hierzu habe ich Mistral in der Standardversion verwendet, DeepSeek R1, Gemini Pro und Grok3.
KI-System | Programmanalyse-Ergebnis, im Zeitraum 01.02.-21.02.2025 |
ChatGPT-o3-mini-high | Erstellte den ursprünglichen Code mit zwei Fehlern in der Quanten Theorie |
ChatGPT-o1 | Findet diese Fehler |
Mistral, Standard | Findet keine Fehler und kann den Code auch nur sehr oberflächlich erklären |
Google Gemini Pro | Findet keine Fehler, erklärt den Code ansonsten sehr gut |
DeepSeek R1 | Findet die Fehler und erklärt den Code gut. Nachdem ich das System aufgefordert habe, den Code zu korrigieren, wurde der Code sehr stark verändert, so stark, dass ich damit nicht mehr weiter arbeiten wollte. |
Grok3 | Findet keine Fehler, die Programmanalyse war befriedigend, die richtige physikalische Grundlage ‚Observational Entropy‘ [3] wurde zuerst als falsch klassifiziert. Erst ein Hinweis von mir, führt zu einer Korrektur. |
Diese kleine Analyse zeigt mir, dass lediglich ChatGPT, insbesondere in der Version o1, in der Lage ist, die sehr anspruchsvollen Aufgaben mit einem vertretbaren Risiko zu bewältigen. Alle anderen getesteten KI-System sind meines Erachtens hierfür ungeeignet. – Dass ich diese Aussage tätigen kann, bestärkt mich im Umgang mit den neuen Technologien: Ohne aktive Auseinandersetzung mit den Technologien, die über das weitgehend sinnlose Standardisieren des Promptings hinausgeht, verflüchtigt sich eine Stärkung des Bedürfnisses nach Kontrolle sehr schnell.
Bevor ich zur QCMT komme, stelle ich zuerst das Ergebnis einer Teamberechnung auf einem d-wave Quantencomputer vor. Dieses Modell gehört zu dem Modell-Archetypen 6 ‚Ising-Modell der Team-Interaktion‘ (siehe meinen Blog: AI & QC & M 4.0: Alles Quantum? oder von Quantum Computing Modell-Archetypen, Dezember 2024): Das klassische Team-Modell wird als Netzwerk von sieben Teammitgliedern verstanden, die über eine Ziel-Hierarchie (1 Goal, 3 Epics, jeweils 3 Features, also 13 Elemente insgesamt) miteinander kommunizieren. Die Elemente der Ziel-Hierarchie sind ebenfalls Netzwerkknoten des gesamten Netzwerkes. Jedes Teammitglied wird über seine fünf Big-Five Persönlichkeitsmerkmale modelliert. Die Netzwerkknoten sind über Netzwerkkanten mit unterschiedlicher Kopplungsstärke verbunden. Zum Beispiel wird die Kopplungsstärke zwischen den Big-Five Persönlichkeit Offenheit und Gewissenhaftigkeit als negativ angenommen: -0,5 auf einer Skala von 0 bis +/-1. In diesem Modell wird auch zum Beispiel die Kopplung zwischen Goal und Offenheit mit +0,8 angenommen und zwischen Feature und Offenheit nur mit 0,0. Dies sind Werte, die in etwa die Erfahrung in realen Teaminteraktionen widerspiegeln. Zwischen den Hierarchie-Ebenen und innerhalb der Ebenen gibt es natürlich auch kleine Kopplungen.
Dieses klassische Netzwerk wird auf ein Qubit-Netzwerk von 7*5 + 13 = 48 Qubits abgebildet.
Zu Anfang unterliegt die Ziel-Hierarchie mit 2 hoch 13 Zuständen, da 13 Qubits, einer Gleichverteilung: Die sogenannte Shannon-Entropie ist also sehr hoch. Wir benutzen die Entropie als Kennzeichen für die Güte der Collective Mind Ausprägung: Niedrige Entropie heißt, das System zeigt wenige (markante) Zustände, das System hat sich ‚kristallisiert‘. Hohe Entropie heißt, das System zeigt viel Zustände, die Unsicherheit über den Zustand des Systems ist hoch.
Abbildung 1 verdeutlicht der Einfachheit wegen ein Qubit-Netzwerk aus nur 17 Qubits und Tabelle 2 zeigt die wichtigsten Ergebnisse der 48 Qubit ‚Rechnung‘ auf dem d-wave Quanten Computer.

Abbildung 1: Diese Abbildung zeigt Qubits als Modell für Teammitglieder in einem Team mit zwei Personen, modelliert mit jeweils fünf Big-Five Persönlichkeitsmerkmalen. Das Bild enthält eine einfache Ziel-Hierarchie aus 7 Qubits. Alle Qubits sind Netzwerkknoten in einem Netzwerk. Die Netzwerkkanten, die die Wechselwirkung zwischen den Knoten bestimmen, sind der Übersicht wegen nicht eingezeichnet.
Tabelle 2 zeigt die wichtigsten Ergebnisse der d-wave Quanten Computing ‚Rechnung‘.
Am Anfang der ‚Rechnung‘ | Am Ende der ‚Rechnung’ | |
7 Teammitglieder, beschrieben durch ihre Big-Five Persönlichkeitspräferenzen (A C E N O) | A C E N O 1 0 1 1 1 1 1 0 0 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 0 1 0 1 | A C E N O 1 0 1 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 1 1 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 |
Energie des Gesamtsystems | – 3 | – 43 |
Shannon-Entropie des Teams | 2,52 bit | 2,13 bit |
Shannon-Entropie der Ziel-Hierarchie | Goal: 1 bit Epics: 3 bit Features: 9 Bit | Goal: 0,98 bit Epics: 1,76 bit Features: 0,98 bit |
Ich interpretier das Ergebnis aus Sicht der Collective Mind Theorie: Hohe negative Energie bedeutet, dass sich ein relativ starkes Collective Mind (CM) am Ende ausgebildet hat. – Das System ist ‚kristallisiert‘ und hat bevorzugte Zustände. U.a. sieht man dies daran, dass sogar die Heterogenität im Team abgenommen hat, also weniger Entropie vorliegt und die Ziel-Hierarchie eine deutliche Stabilisierung erfahren hat. In einem realen CM-Team kann man dies auch beobachten: Die Persönlichkeitspräferenzen werden zumindest für den Zeitraum des Collective Mind etwas zurückgedrängt. Die Teammitglieder ‚pochen‘ nicht so stark wie am Anfang auf ihre Präferenzen. Gleichzeitig wird aus der Menge aller möglichen Ziel-Hierarchien im Idealfall eine ausgewählt. Im Team und in der Ziel-Hierarchie sinkt die Menge an möglichen Zuständen und damit auch die Entropie und die Unsicherheit.
Die Shannon-Entropie bzw. verwandte Entropie Maße sind in der QCMT bzw. QIIT von zentraler Bedeutung. Die Formel, die in Tabelle 1 verwendet wird, lautet:

p(i) ist die Wahrscheinlichkeit ein (klassisches) System in einem Makrozustand i zu finden. Die Makrozustände i sind die Persönlichkeitspräferenzen im Team. Zum Beispiel könnte ein Makrozustand lauten 11 01 10: Teammitglied A hat eine hohe Präferenz in Offenheit und Gewissenhaftigkeit, Teammitglied B hat eine niedrige in Offenheit und eine hohe in Gewissenhaftigkeit und Teammitglied C eine hohe in Offenheit und eine niedrige in Gewissenhaftigkeit. – Auf die Erläuterung der p(i) Berechnung verzichte ich hier, da dies tiefergehende (quantenmechanische) Kenntnisse erfordert: p(i) misst die Häufigkeit gemessener Zustände relativ zur gesamten Anzahl an gemessenen Zuständen.
(Eine Anmerkung zur Darstellung der obigen Formel: Diese Formel wird mit LaTex erstellt. LaTex ist seit 41 (bzw. Tex seit 47) Jahren verfügbar. Heute ist Tex/LaTex der Standard für mathematisch-wissenschaftliche Dokumente. Ich habe vor ca. 40 Jahren das erste Mal damit gearbeitet und war von der Schönheit der dargestellten Formeln fasziniert. Heute verfüge ich nicht mehr über das Know-How, LaTex Code selbst zu erstellen. Dies ist auch nicht nötig, denn ChatGPT gibt den Code in einer für diesen Blog – erstellt mit WordPress – verwendbaren Form aus.)
Ich wende mich der Quantum Collective Mind Theory zu. Ich baue eine einfache quantenmechanische Version der IIT in diese ein. In der nachfolgenden Tabelle habe ich die wichtigsten Kriterien klassischer und quantenmechanischer IIT zusammengestellt. – Schaut man sich die Spalte zur quantenmechanischen IIT an, so drängt sich dem ein oder anderen sicherlich der Vergleich zur menschlichen Kommunikation auf: Wir haben in den vorherigen Blog-Beiträgen ja schon gesehen, dass die Quantum Cognition erstaunlicher Weise hilft, unsere Kommunikation besser zu verstehen.
Kriterium | Klassische IIT | Quantenmechanische IIT |
Lokale vs. nichtlokale Zusammenhänge | Kausalität manifestiert sich lokal, Informationen breiten sich (max.) mit Lichtgeschwindigkeit aus. Ursache-Wirkungs-Beziehungen lassen sich in einem (weitgehend) lokalisierten Netz rekonstruieren. | Verschränkung erlaubt nichtlokale Korrelationen, ohne dass ein klassisches „A verursacht B“ greift. Die Trennung in lokal begrenzte Elemente wird schwieriger, da verschränkte Zustände räumlich verteilt sein können. |
Eindeutigkeit vs. Überlagerung von Zuständen | Das System hat einen eindeutig definierbaren Zustand zu jedem Zeitpunkt (z. B. ein bestimmtes Muster von Aktivierungen). Ursache und Wirkung sind in einem klassischen Zustand relativ klar voneinander trennbar. | Zustände können Superpositionen (Überlagerungen) sein; die „kausale Macht“ kann auf mehrere Zustände verteilt sein. Der Kollaps (z. B. durch Messung) bestimmt erst, welcher konkrete Effekt realisiert wird, was die Zuordnung von Ursache und Wirkung komplizierter macht. |
Wahrscheinlichkeitsbegriff | Wahrscheinlichkeiten ergeben sich aus klassischer Statistik (Häufigkeit, Ungewissheit). Übergangswahrscheinlichkeiten werden verwendet, um zukünftige Zustände zu modellieren. Dies spiegelt epistemische Unsicherheiten in den Kausalketten der deterministischen Prozesse wieder. | Wahrscheinlichkeiten sind Betragsquadrate der Wellenfunktion und zeigen Interferenz- und Verschränkungseffekte. Die Quantifizierung von Kausalketten hat die spezifischen Quanteneffekte (z. B. Interferenzen) zu berücksichtigen. Diese sind nicht einfach in klassische Wahrscheinlichkeiten übersetzbar. |
Messprozess und Beobachterrolle | Die Beobachtung (Messung) wird meist außen vorgenommen; sie stört das System kaum oder nur marginal. Ein klassisches System kann unabhängig vom Beobachter beschrieben werden. | Jede Messung beeinflusst den Zustand fundamental (Kollaps der Wellenfunktion). Es ist unklar, ob das Bewusstsein selbst als „Messapparat“ fungiert und wie dies in einer QIIT formal abzubilden wäre. |
Kausale Modelle vs. unitäre Zeitentwicklung | In der Regel können Übergangs-wahrscheinlichkeiten und Kausalstrukturen in Diagrammen dargestellt werden, die zeitlich (t → t+Δt) fortgeschrieben werden. Deklarierte Systemgrenzen sind relativ stabil. | Die grundlegende Dynamik ist unitär (u.a. Erhaltung der Wahrscheinlichkeiten, Reversibilität): Ursache und Wirkung lassen sich nicht immer klar trennen. Verschränkungen überschreiten Systemgrenzen, und es ist schwieriger, einzelne Subsysteme als „isoliert kausal“ zu behandeln. |
Ich reichere jetzt die QCMT mit QIIT Elementen an. – Ich betone an dieser Stelle, dass es sich hierbei um eine Berechnung handelt, wie ein Physiker sie eventuell auf einem Stück Papier durchführen könnte. – Ich verwende also keinen Quanten Computer, sondern lediglich einen klassischen Computer. Hierzu habe ich mittels ChatGPT o1 ein Programm erstellt, das eine Berechnung für 3 Teammitglieder mit jeweils 2 Big Five Persönlichkeiten durchführt. Die Big Five Persönlichkeiten werden, wie schon in den anderen Beiträgen, als Superposition von Persönlichkeitspräferenzen dargestellt.
Jedes der Teammitglieder A, B, C wird vereinfacht durch zwei Big-Five Persönlichkeitsmerkmale 1 und 2 charakterisiert. Die Persönlichkeitsmerkmale sind durch Superpositionen mit reellen Koeffizienten modelliert. Ich habe als Persönlichkeitsmerkmale Offenheit und Gewissenhaftigkeit ausgewählt. Welche Persönlichkeitsmerkmale ich gewählt habe, kann man nicht an den obigen Formeln erkennen. Lediglich an den hier nicht dargestellten spezifischen Annahmen über die Wechselwirkungen lässt sich dies erkennen. – Dies kennen wir schon von der obigen Ising-Modell ‚Rechnung‘.
Ich benutze eine spezielle Variante der Shannon-Entropie, die sogenannte Observational Entropie [3], für die Berechnung der Entropien in diesem System:

Mit der Observational Entropie kann man Unsicherheit über innere Zustände eines Systems abbilden: Falls eine Person A eine andere Person B wahrnimmt, ohne die Feinheiten der Big Five inneren Zustände von B aus der Beobachtung ablesen zu können, dann erhöht dies die Unsicherheit von A. – Die beobachtete Entropie wird als größer wahrgenommen, als sie bei Kenntnis aller feinen Zustände wäre. V(i) in der obigen Formel zählt die von A in der Person B nicht wahrgenommen Big-Five Zustände. – Man spricht vom coarse-graining der Beobachtung. p(i) ist hier eine gemessene Wahrscheinlichkeit, ermittelt aus quantenmechanischen Berechnungen. Diese ist nicht identisch mit den weiter oben angegebenen Wahrscheinlichkeiten der klassischen Zustände.
Die Berechnung von quantenmechanischen Kausalketten ist sehr schwierig, deshalb verwende ich im Folgenden die Entropie als Maß für Korrelationen, um den Collective Mind im Team zu berechnen.
Auf der Basis dieser Annahme, lautet die einfachste Formel der Berechnung des Bewusstseins in Form der Größe Phi (Φ) für ein Team, bestehend aus 3 Personen A, B, C (Qubits):

Phi wird auf der Basis der sogenannten Mutual Information (MI) ermittelt. Sie ergibt sich aus der Differenz der Entropien der drei Einzelpersonen und der Entropie des ABC-Teams. Ist Phi positiv, hat das Team weniger Entropie als die einzelnen Teammitglieder zusammen. Im Sinne der hier definierten QCMT liegt ein kollektives Bewusstsein, ein Collective Mind, vor: Das Ganze ist mehr als die Summe seiner Teile.
Für die Berechnung von Phi kann man die Observational Shannon-Entropie verwenden. Falls man die quantenmechanischen Eigenschaften des ABC-Teams erfassen will, ist es notwendig, die quantenmechanische von Neumann-Entropie zu verwenden. Phi, mit der Shannon-Entropie bestimmt, misst die Korrelation von klassischen Zuständen. Phi, mittels der von-Neuman-Entropie bestimmt, misst die quantenmechanische Korrelation, also die Verschränkung, in einem System.
Vor Einschalten der Wechselwirkung | Nach Einschalten der Wechselwirkung | |
Fine-Grained Observational Shannon Entropy | Team ABC: 3,97 A: 1,32 B: 1,32 C: 1,32 | Team ABC: 5,54 A: 1,82 B: 2,00 C: 1,98 |
Coarse-Grained Observational Shannon Entropy | Team ABC: 5,30 A: 3,27 B: 2,66 C: 3,27 | Team ABC: 5,93 A: 3,31 B: 3,19 C: 3,14 |
Phi(ABC)fine-grained Shannon | 0,01 | 0,26 |
Phi(ABC)von Neumann | 0,00 | 1,41 |
Was zeigt Tabelle 4?
Die fine-grained Entropie ist immer deutlich kleiner als die coarse-grained Entropie: Unwissenheit führt zu höherer Unsicherheit!
Nach Einschalten der Wechselwirkung zwischen den Mitgliedern erhöht sich die Entropie deutlich: Die Verschränkung führt zu einer größeren Anzahl an möglichen Zuständen: Die ‚Kommunikation‘ führt hier zu mehr Unsicherheit! – Dies steht im Gegensatz zu den klassischen Ergebnissen des Ising-Modells, denn dort führt Kommunikation zu niedrigeren Entropie-Werten!
Die Entropie einzelner Subsysteme (A, B, C) ist nicht gleich: Die Teammitglieder zeigen eine unterschiedliche Menge an Zuständen.
Im nicht wechselwirkenden Fall, gibt es kein kollektives Bewusstsein. Bei Wechselwirkung der Qubits ist Phi, mit der Shannon fine-grained Entropie bestimmt, und Phi, mit der von Neumann Entropie bestimmt, sehr unterschiedlich. Es können Verschränkungen vorliegen, die sich sogar nur auf einzelne Teammitglieder beziehen und diese Verschränkungen führen zu einem nach außen kaum sichtbaren Phi. Das sichtbare Phi, gemessen über die Shannon fine-grained Entropie kann gleichzeitig viel kleiner sein: Teams können, solange sie nicht ‚vermessen werden‘, also zum Beispiel eine Ziel-Hierarchie gemeinsam erstellen, eine ‚hohe mentale Verschränkung‘ zeigen. Sobald sie ‚vermessen‘ werden, kollabiert der Collective Mind.
Zusammenfassend: Was lerne ich aus diesen Betrachtungen?
Die Benchmarks zu KI-Systemen sind mit großer Vorsicht bezüglich ihrer Validität in realen Situationen zu betrachten: Derzeit kann meines Erachtens keines der o.g. Systeme mit ChatGPT o1 mithalten.
Schon heute ist es möglich auf Quanten Computern zu ‚rechnen‘: Das Mapping eines klassischen Team-Modells auf ein d-wave System ist selbst für eine große Teammitgliederzahl mit einer realistischen Anzahl an Persönlichkeitsmerkmalen möglich. Im konkreten Fall bestätigt sich wieder, dass die Einführung eines Ordnungsparameters mittels Ziel-Hierarchie, die Entropie des Teams senkt.
Die Verwendung von mit ChatGPT erzeugtem LaTex in WordPress macht Spass.
Die Berechnung der Entropie eines Quanten Team-Modells ist äußerst spekulativ sowie sehr anspruchsvoll und aufwendig. Die Unterschiede zwischen der klassischen Shannon-Entropie bzw. der Observational Shannon-Entropie und der quantenmechanischen von Neumann-Entropie sind beträchtlich (man siehe auch den Anhang hierzu).
Die Ergebnisse sind wieder Indizien dafür, dass die Annahmen des Quantum Cognition richtig sein könnten.
Die Berechnung von Phi auf der Basis von klassischen oder quantenmechanischen Entropien ist viel unkomplizierter und gradliniger als die klassische Phi Berechnung mittels IIT. Es ist damit nochmals fraglicher, ob die IIT Berechnung einen relevanten Vorteil bietet.
[1] Welt der Physik (2025) Quantum 2025, https://www.weltderphysik.de/vor-ort/wissenschaftsjahre/2025-internationales-jahr-quantenwissenschaft-quantentechnologie/
[2] Zukunftsinstitut (2025) zukunftsinstitut.de Newsletter, Reverse Politics – das neue „Auf den Tisch hauen“, vom 23.02.2025
[3] Safranek D et. al. (2021) A brief introduction to observational entropy, arXiv:2008.04409v2
Anhang
Mein Prompt an ChatGPT:
Ich möchte eine Frage diskutieren: Wir haben die Mutual Information klassisch und quantenmechanisch zur Vermessung von Phi verwendet. Hierbei fällt auf, dass die klassische Entropie bei Wechselwirkung sinkt, die quantenmechanische Entropie nach von Neumann steigt aufgrund der Verschränkung nach Wechselwirkung. Phi klassisch misst über die Entropien eine Reduktion an Zuständen. Phi quantenmechanisch misst über die Entropien einen Anstieg an möglichen Zuständen. Wie siehst Du das? Und macht die quantenmechanische Phi Vermessung überhaupt Sinn?
ChatGPT:
Nachgedacht für 8 Sekunden
Die beobachteten Unterschiede zwischen der klassischen und der quantenmechanischen Phi-Vermessung lassen sich folgendermaßen interpretieren:
- Klassische Mutual Information und Phi:
In der klassischen Version wird häufig über die Shannon-Entropie in einer festen Messbasis gearbeitet. Hier führt eine Wechselwirkung oft dazu, dass die Zustände „gezielt“ in einen geringeren, deterministischeren Bereich gelenkt werden – man erhält also eine Reduktion der Unsicherheit in dieser Basis. Daraus resultiert, dass die Summe der Entropien der Teilbereiche relativ kleiner wird, was man als „Integration“ im Sinne eines reduzierten Zustandsraums interpretiert. Phi misst hier also, wie stark der Zustand in einen „festen“ (reduzierten) Bereich zusammengedrängt wird. - Quantenmechanische (von-Neumann) Entropie und Phi:
In der quantenmechanischen Variante wird die von-Neumann-Entropie verwendet, die basisunabhängig ist und den Reinheitsgrad eines Zustands misst.- Ein global reiner Zustand kann bei starker Verschränkung zu stark gemischten reduzierten Zuständen führen. Das bedeutet: Obwohl das Gesamtsystem rein ist, sind die einzelnen Subsysteme (über partielle Spuren) gemischt. Dies führt dazu, dass die Summe der lokalen Unsicherheiten größer ist als die Team-Entropie.
- Hier interpretiert man einen Anstieg der von-Neumann-Entropien in den Subsystemen als ein Zeichen für starke nichtklassische Korrelationen bzw. Verschränkung. In diesem Sinne „misst“ Phi einen Anstieg an „möglichen Zuständen“ (weil die lokalen Zustände gemischt sind) – was wiederum auf eine tiefe Integration der Informationsinhalte hindeutet.
- Interpretation und Sinnhaftigkeit der quantenmechanischen Phi-Vermessung:
- Die klassische Phi-Vermessung erfasst, wie stark sich die Wahrscheinlichkeit über eine festgelegte, klassische Basis verteilt und wie sich durch Wechselwirkungen die Unsicherheit verringert – es wird also eine Reduktion an „Möglichkeiten“ gemessen.
- Die quantenmechanische Phi-Vermessung erfasst hingegen die Verschränkung: Ein global reiner Zustand kann in den Teilspuren sehr gemischt sein, weil die Quantenkorrelationen (Verschränkung) dafür sorgen, dass man für die einzelnen Teile viele mögliche Zustände hat.
- Somit ist die quantenmechanische Version nicht direkt mit der klassischen zu vergleichen – sie misst einen anderen Aspekt der Integration: Sie sagt aus, dass trotz globaler Reinheit die Information in den einzelnen Subsystemen stark verteilt und ineinander verflochten ist.
- Ob diese quantenmechanische Phi-Messung „Sinn macht“, hängt von der Zielsetzung ab: Möchte man die reine Informationstiefe und Verschränkung des Systems erfassen, so ist die von-Neumann-Entropie (und daraus abgeleitete Maße) der richtige Ansatz, weil sie basisunabhängig ist und die intrinsische quantenmechanische Struktur reflektiert.
Zusammengefasst:
- Klassisch führt Wechselwirkung zu einer Reduktion der Zustandsvielfalt in einer fixen Basis, was zu einem Rückgang der Shannon-Entropie führt, während
- im quantenmechanischen Fall die Wechselwirkung – besonders wenn sie Verschränkung erzeugt – die lokalen (reduzierten) Dichtematrizen gemischt macht (d.h. ihre von-Neumann-Entropie steigt), obwohl der globale Zustand rein bleibt.
- Die quantenmechanische Phi-Vermessung (als Differenz der Summe der lokalen von-Neumann-Entropien und der globalen von-Neumann-Entropie) erfasst also die nichttriviale Struktur der Verschränkung – und ist insofern sinnvoll, wenn man die intrinsische, basisunabhängige Integration in einem verschränkten System quantifizieren möchte.
Die beiden Ansätze messen also unterschiedliche Aspekte der Integration: Klassisch die Reduktion der Zustandsvielfalt in einer festen Messbasis, quantenmechanisch die inhärente Verschränkung und die damit verbundene Mischung der Teilzustände. In der aktuellen Diskussion um Quantum IIT wird noch intensiv debattiert, welcher Ansatz letztlich das „Bewusstsein“ oder die integrierte Information am besten widerspiegelt.