AI & M 4.0: „Ein Bogenschütze mit einem fantastisch schönen Bogen und goldenen Pfeilen“ – Oder: Auf dem Weg zur Künstlichen Allgemeinen Intelligenz?

Im diesem Blogartikel beschäftige ich mich mit der Erstellung von Text-Zusammenfassungen und Bild-Metaphern. Dies sind wichtige Bereiche jeglicher Informations- und Wissens-Verarbeitung, insbesondere auch im Management und Projektmanagement. – Man siehe hierzu auch meinen Blog-Beitrag vom Dezember 2021.

Ich beschreibe im Folgenden die Benutzung der verwendeten AI-Werkzeuge etwas genauer. – Vielleicht mag der ein oder andere meine Erfahrungen weiterentwickeln.

Da die verwendeten AI-Werkzeuge mehrere Abstraktionsebenen über den in den letzten Blog-Beiträgen verwendeten AI-Werkzeugen liegen und jene über eine recht einfache Benutzerschnittstelle angesprochen werden können, spreche ich von Black-Box AI-Werkzeugen

Für die Erzeugungen von Bild-Metaphern verwende ich die KI midjourney und für die Erzeugung von Text-Zusammenfassungen die KI GPT-3.

Auf die KI midjourney wurde ich über den Artikel „Kunst per Künstlicher Intelligenz“ von Patrick Hannemann aufmerksam [1]. Er stellt dort die Kommunikationsplattform discord.com [2] vor, die die KI midjourney über einen Bot integriert enthält [3].

Ich widme mich zuerst den Bild-Metaphern: Bild-Metaphern können zum Beispiel bei der Ausbildung eines Collective Minds in Teams eine sehr große Rolle spielen. – Sie dienen u.a. der Teamausrichtung und -fokussierung.

Also habe ich ausprobiert, inwieweit sich midjourney für die Kreation von Bild-Metaphern eignet. – Ich starte mit einem Thema zu meinem Bogenschieß-Hobby und gebe dem Bot über den Prompt ‚/imagine…‘ folgende Aufgabe: Kreiere ein Bild zu der Aussage „Ein Bogenschütze mit einem fantastisch schönen Bogen und goldenen Pfeilen“.

Der Bot liefert mehrere Bilder als Vorschläge zurück. Abbildung 1 zeigt das von mir ausgewählte Bild:

Abbildung 1: Erzeugt von der AI midjourney mit der Aussage „Ein Bogenschütze mit einem fantastisch schönen Bogen und goldenen Pfeilen“ [3].

Für mich ist das Ergebnis beeindruckend kreativ und schön!

Ich habe daraufhin getestet, welche Bilder die AI aus der Kurzdefinition von Management 4.0 erzeugt. Abbildung 2 zeigt einen Screenshot-Auszug der vier generierten Bildvorschläge:

Abbildung 2: Screenshot-Auszug der vier Bildvorschläge zur Management 4.0 Definition (im Screenshot enthalten) [3].

Das war wohl etwas abstrakt, die generierten Bilder sind recht nichtssagend 😉.

Eine Kürzung auf die wesentlichen, in der Definition enthaltenen Themen erzeugt jedoch innerhalb von wenigen Sekunden vier recht gute Bild-Metapher Vorschläge:

Abbildung 3: Screenshot-Auszug der vier Bildvorschläge zur Aussage „leader, organization, mindset, self-organization“ (siehe obigen Screenshot) [3].

Ich habe das erste Bild für die weitere Generierung von Versionen ausgewählt und mich schließlich für folgende Bild-Metapher entschieden:

Abbildung 4: Von mir ausgewähltes Bild zur Aussage „leader, organization, mindset, self-organization“ [3].

Dies ist ein Ergebnis, generiert nach ca. 5 Minuten Interaktion mit dem AI-Bot. Wie ich finde: beeindruckend!

Für den Bereich Bild-Metaphern fasse ich zusammen: Selbst öffentlich verfügbare AI-Systeme liefern beeindruckende Bild-Metaphern auf der Basis von Themen (Topics). Topics können aus von AI-Systemen generierten Wissens-Netzwerken (man siehe den Juni 2022 Blog-Beitrag) entnommen werden oder über spezifische Topic AI-Systeme [4], [5] generiert werden.

Legt man folgende Definition für eine Künstliche Allgemeine Intelligenz zugrunde, “Artificial general intelligence (AGI) is the ability of an intelligent agent to understand or learn any intellectual task that a human being can.“ [6], so ist der AI-Bot midjourney vermutlich noch weit von einer AGI entfernt.

Gleichwohl stelle ich für mich selbst fest, dass ich wohl kaum in der Lage bin, mit ähnlicher Kreativität wie diese AI, die oben gezeigten Bilder zu erzeugen.

Überträgt man die Messung des Intelligenzquotienten für Menschen auf AI-Systeme, so dürfte eine Zusammenschaltung von mehreren AI-Systemen schon heute fantastisch hohe Intelligenzquotienten ergeben. Die AI-Systeme, die im Jahre 2019 verfügbar waren, liefern IQ-Werte die bei ca. 25%-50% eines mittleren menschlichen IQ von 100 liegen. – Ein IQ von 50 entspricht in etwa dem IQ eines 6-jährigen Kindes [7], [8], [9]. Sehr große AI-Systeme wie GPT-3, das ich weiter unten verwende, waren in diesen Untersuchungen noch nicht berücksichtigt. – Für GPT-3 dürfte der IQ schon deutlich näher bei 100 liegen.   

Sollte die AGI eines Tages Realität sein, so nehme ich an, dass keine 9 Milliarden AI-Systeme erforderlich sind, um das (kognitive) Intelligenzspektrum von 9 Milliarden Menschen abzubilden. – Wahrscheinlicher ist, dass einige wenige AI-Systeme das kognitive Intelligenzspektrum von Milliarden von Menschen abdecken werden, und dies mit wesentlich höheren IQ-Werten als wir Menschen im besten Fall haben.

Die Ergebnisse der Forschungsarbeit der GPM Fachgruppe Agile Management zum Thema NLP-Verarbeitung (Natural Language Processing Verarbeitung) von Projektmanagement Fragestellungen mittels AI-Systemen zeigen in diese Richtung.

Wir haben verschiedenen AI-Systemen PM Know-How Fragen gestellt, wie sie in einer Prüfung für das IPMA Level D vorkommen könnten. Das Ergebnis ist ziemlich beeindruckend: „Kleinere“ AI-Systeme liefern keine befriedigenden Ergebnisse, meistens sogar mangelhafte Ergebnisse. Jedoch liefert das große System GPT-3 von openai.com in allen! Fragen sehr gute oder gute Ergebnisse: GPT-3 hat hiernach das IPMA Level D Zertifikat mit gut bestanden! – Diese Ergebnisse haben wir auf der diesjährigen IPMA Research Konferenz vorgestellt [10], [11].

Ich widme mich jetzt den Text-Zusammenfassungen mittels GPT-3 [12], [13].

Ich nehme das Gesamtergebnis vorweg: Mein! Versuch mittels GPT-3 sinnvolle Zusammenfassungen von Texten zu erzeugen liefert (bisher) keine wirklich überzeugenden Ergebnisse. Es gibt also aktuell auch noch Wermutstropfen in dieser „schönen neuen AI-Welt“😉.

Ich habe dem AI-System GPT-3 die Aufgabe gestellt, für einen meiner Blog-Artikel eine Zusammenfassung zu erstellen. Ich habe den Beitrag vom September 2021 „Metabetrachtungen: Zur Schnittmenge von Intuitivem Bogenschießen, Künstlicher Intelligenz und Management 4.0“ ausgewählt. Er hat einen Bezug zur obigen Bild-Metapher Abbildung 1 und stellt verschiedene Themen (Bogenschießen, AI und M 4.0) in einen eventuell ungewöhnlichen Zusammenhang und ist damit ein Text, den man wahrscheinlich sonst nirgendwo im Internet finden kann. Die AI kennt also mit ziemlicher Sicherheit keine ähnlichen Texte.

Ich greife auf GPT-3 als Black-Box AI-System zu und nicht wie für andere AI & M 4.0 Blog-Beiträge auf verschiedene AI/ML Bibliotheken. Wie bei der Unterhaltung mit dem AI-Bot midjourney ist auch hier das Abstraktionsniveau der „Ansprache“ sehr hoch.

Um Zugriff auf GPT-3 zu erhalten [13], ist es notwendig, sich bei openai.com zu registrieren. Solange man GPT-3 nicht für produktive Zwecke nutzen will, wird ein budgetierter Zugang von $18 als Geschenk freigegeben. Openai.com orientiert sich für die Freigabe an einer Risiko-Bewertung: Forschungsaktivitäten, wie ich sie hier durchgeführt habe, werden als sandbox-Aktivitäten behandelt und unterliegen keinen Restriktionen. – Dies ist sehr ähnlich den Anforderungen, die im EU AI Act zu finden sind. – Man siehe hierzu meinen Blogbeitrag vom August 2022.

Eine Möglichkeit auf GPT-3 zuzugreifen, ist der Zugriff über das User Interface ‚Playground‘ (man siehe Abbildung 5).

In ersten Versuchen habe ich die sogenannten Presets verwendet (man siehe Abbildung 5, und dort die rot eingefassten Bereiche). – Dies sind vorkonfektionierte Aufgabentypen, u.a. auch für die Erstellung von Zusammenfassungen. Die Ergebnisse waren richtig schlecht und recht oft unsinnig: Teilweise wurden Texte abgerufen, in denen wohl ein Bogenschütze auf die Jagd geht oder der deutsche Text, der zusammenzufassen war (man kann also auch nicht-englischen Text eingeben), wurde „einfach“ übersetzt.

Abbildung 5: GPT-3 playground [14]

Wie ich heute weiss, habe ich mit den presets das Potential von GPT-3 überhaupt nicht angesprochen. – Man kann nämlich über die Prompteingabe mit GPT-3 „reden“, d.h. der AI in Satzform sagen, was sie machen soll. Die Aufgabe „Write a summary in English for the following text using the following topics, Management 4.0, self-organization, instance-based learning, model-based learning:” (siehe Abbildung 5 erster Satz im Eingabefeld) brachte bisher das beste Zusammenfassungs-Ergebnis:

“The article discusses the intersection of intuitive archery, artificial intelligence, and management 4.0. It argues that learning is the key element to align the human system, the technical system neural network, and the social system team or organization to the environment. The article distinguishes between instance-based learning and model-based learning. It argues that learning in management 4.0 is model-based learning, and that instance-based learning is insufficient for learning in a complex context.”

An diesem Ergebnis kann man erkennen, dass GPT-3 in der Lage ist, explorative und abstrahierende Zusammenfassungen zu erstellen. Explorative Zusammenfassungen enthalten lediglich Sätze aus dem Original, die als wichtig erkannt werden. Abstrahierende Zusammenfassungen enthalten neue Sätze, die so nicht im Original enthalten sind.- Die abstrahierende Zusammenfassung ist u.a. an Sätzen wie „The article distinguishes…“ zu erkennen.

Ich habe dieses Ergebnis als bestes ausgewählt, weil dies das einzige Beispiel ist, in dem der Satz „It argues that learning in management 4.0 is model-based learning, and that instance-based learning is insufficient for learning in a complex context.” enthalten ist. Dieser Satz ist eine zentrale Erkenntnis des Blog-Beitrages. Leider sind nicht alle Erkenntnisse enthalten; z.B. wird das Thema Selbstorganisation als zentrales verbindendes Element der drei Bereich, Management 4.0, AI und Bogenschießen, nicht erkannt. Deshalb gebe ich GPT-3 in diesem Fall auch nur die Schulnote ausreichend.

Im Playground können nur Texte eingegeben werden, deren Anzahl an Tokens (ungefähr gleich der Anzahl an Worten), addiert mit der Anzahl an Tokens für die Zusammenfassung, 4000 Tokens nicht überschreiten. Ich habe für die Zusammenfassung 507 Tokens vorgegeben und habe damit noch ca. 3500 Tokens für den eigentlichen zusammenzufassenden Text zur Verfügung. Falls der Text in einer Fremdsprache eingegeben wird, halbiert sich der verfügbare Raum für den Text auf etwa die Hälfte an Tokens: GPT-3 benötigt Raum für die Übersetzung. – Die „Muttersprache“ von GPT-3 ist Englisch! Aus diesem Grund konnte ich auch nur einen Auszug des Blogs verwenden. Aus Gründen der Vergleichbarkeit habe ich für die deutschen und die englischen Texte den Auszug gleich beibehalten und jeweils ca. 1400 Wörtern verwendet. In allen Tests habe ich die von opneai.com empfohlene Stop sequence <|endoftext|> am Ende des Textes eingesetzt.  – Das Verwenden einer Stop sequence zum Anzeigen des Textendes hat einen recht großen Einfluss auf das Zusammenfassungsergebnis.

Statt GPT-3, verwende ich den google-Übersetzer [15] und den Übersetzer deepl.com [17], um einen englischen Text für meinen Blog-Beitrag zu erzeugen. Die Übersetzungen sind sehr ähnlich, wobei meines Erachtens bei genauerer Betrachtung doch manchmal recht große Unterschiede auffallen. So übersetzt zum Beispiel deepl.com „Meta-Betrachtungen“ mit „Meta-observations“ und der google-Übersetzer mit „Meta considerations“. – Dies scheint mir ein nicht unerheblicher Unterschied zu sein.

Google verändert auch in erheblichem Maße die Syntax. So wurde wie hier zu sehen, u.a. der Bindestrich zwischen Meta und consideration einfach entfernt. Groß- und Kleinschreibung und Satzzeichen wurden verändert, so dass selten – aber immerhin geschah es – sich ein vollständig anderer Sinn ergeben hat. Mehrmals wurden ganze Satzteile einfach weggelassen. – Ein schwerwiegender Fehler.

Bei deepl.com ist dies im vorliegenden Beispiel einmal vorgekommen bei google dreimal. Der google-Übersetzer liefert auch leicht andere Ergebnisse, je nachdem, ob man ihn mit einer zu übersetzenden Internetseite füttert oder einer Worddatei, die den Inhalt der Internetseite enthält.

Ich betone dies, weil beide Übersetzer mit AI betrieben werden. Es ist nicht auszuschließen, dass die AI sauber funktioniert, jedoch die Aufbereitung der Daten, also der Texte, nicht fehlerfrei ist. – Versteckte Satzzeichen oder Abschnittszeichen werden unterschiedlich interpretiert. Die AI-Systeme benötigen trotz ihrer „Intelligenz“ Daten in einer wohldefinierten Form. – Es gibt keinen Spielraum für „intelligentes Ausbessern“ wie in der menschlichen Kommunikation. Das macht das Arbeiten mit AI-Systemen nicht selten zu einem Geduldsspiel. Die korrekte Dateneingabe wurde, nach meiner bisherigen Erfahrung, von AI-Erstellern nicht gut dokumentiert.

Um die Restriktion bezüglich des Textumfanges zu umgehen, kann man GPT-3 auch über ein Jupyter Notebook [17] in der Colab-Umgebung [18] ansprechen. – Man beachte, GPT-3 ist in der Colab-Umgebung aufrufbar, obwohl google und openai im Wettbewerb stehen. – Bemerkenswert erfreulich!

Ich habe den Code von [19] verwendet und für meine Aufgabenstellung angepasst. Für den vollständigen Text in Deutsch erzeugt GPT-3 eine deutlich größere explorative Zusammenfassung in Englisch, obwohl ich GPT-3 um eine deutsche Zusammenfassung gebeten habe.

Den mittels deepl.com ins Englische übersetzten Blog-Artikel habe ich einmal als .pdf Datei Seite für Seite eingelesen und alternativ direkt als Text in die Colab-Umgebung eingebracht. In beiden Fällen wurde eine abstrahierende Zusammenfassung erstellt. Die erste Zusammenfassung entspricht der schon bekannten besten Zusammenfassung, die zweite Zusammenfassung ist eine andere:

“The article discusses the intersections of intuitive archery, artificial intelligence, and Management 4.0. Intuitive archery is a form of archery that does not rely on aiming technique, and is used for therapeutic archery in clinics. The author argues that the ability to focus, adapt, and intuition are central elements of Intuitive Archery, which are also important for Management 4.0. The author describes their experience with a Deep Learning course using Tensorflow, and how it has helped them understand the potential for artificial intelligence in project management.”

Ich konnte also an meiner Aufgabenstellung nicht erkennen, dass GPT-3 mit jedem Aufgabendurchlauf dazu lernt. – Eine Aussage, die andere schon getroffen haben [12].

Zusammenfassung: Meine Untersuchungen zu Text-Zusammenfassungen mittels GPT-3 und Bild-Metaphern mittels midjourney zeigen schon recht gute Ergebnisse, jedoch ist Vorsicht geboten, wenn man die Werkzeuge (schon) im produktiven Betrieb benutzen möchte. Jedoch ist schon heute auf einfachen Wegen selbst erfahrbar, dass der Weg in Richtung einer Künstlichen Allgemeinen Intelligenz eingeschlagen wurde.     

 

[1] Hannemann P (2022) Kunst per künstlicher Intelligenz: Mit diesen Tools können Sie das selbst ausprobieren, https://www.chip.de/news/Kunst-per-kuenstlicher-Intelligenz-Mit-diesen-Tools-koennen-Sie-das-selbst-ausprobieren_184386657.html, zugegriffen am 06.09.2022

[2] Discord (2022) Discord.com, Innovative Kommunikationsplattform, zugegriffen am 06.09.2022

[3] midjourney(2022) Forschungsprojekt zu AI, https://www.midjourney.com/home/, zugegriffen am 06.09.2022, zugegriffen am 06.09.2022

[4] Keita Z (2022) Meet BERTopic— BERT’s Cousin For Advanced Topic Modeling, https://towardsdatascience.com/meet-bertopic-berts-cousin-for-advanced-topic-modeling-ea5bf0b7faa3, zugegriffen am 09.04.2022

[5] Dwivedi P (2022) NLP: Extracting the main topics from your dataset using LDA in minutes, https://towardsdatascience.com/nlp-extracting-the-main-topics-from-your-dataset-using-lda-in-minutes-21486f5aa925, zugegriffen am 09.04.2022

[6] Wikipedia (2022) Artificial General Intelligence, https://en.wikipedia.org/wiki/Artificial_general_intelligence, zugegriffen am 06.09.2022

[7] Liu Y, He F, Zhang H, Rao G, Feng Z and Zhou Y (2019) How Well Do Machines Perform on IQ tests: a Comparison Study on a Large-Scale Dataset, Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

[8] Tschopp M, Ruef M (2019) An Interdisciplinary Approach to Artificial Intelligence Testing: Developing an Artificial Intelligence Quotient (A-IQ) for Conversational AI, siehe researchgate.net

[9] Liu F, Liu Y, Shi Y (2020) Three IQs of AI systems and their testing methods, https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/joe.2019.1135, zugegriffen am 05.09.2022

[10] Nuhn H, Oswald A, Flore A, Lang R, (2022) AI-supported Natural Language Processing in project management – capabilities and research agenda, IPMA Research Conference 2022, www.ipma-research-conference.world

[11] Lang R (2022) Kann Künstliche Intelligenz (KI) das Projektmanagement unterstützen? https://www.linkedin.com/feed/update/urn:li:activity:6970285127754997760/,  zugegriffen am 09.09.2022

[12] Romero A (2022) A Complete Overview of GPT-3 — The Largest Neural Network Ever Created, https://towardsdatascience.com/gpt-3-a-complete-overview-190232eb25fd, zugegriffen am 09.08.2022

[13] Willison S (2022) How to play with the GPT-3 language model, https://simonwillison.net/2022/Jun/5/play-with-gpt3/, zugegriffen am 09.08.2022

[14] GPT-3 playground (2022) openai.com, zugegriffen am 09.09.2022

[15] google Übersetzer (2022) https://translate.google.de/?hl=de&tab=rT, zugegriffen am 09.09.2022

[16] Deepl (2022) https://www.deepl.com/translator, zugegriffen am 09.09.2022, verwendet für diesen Blog-Beitrag in der kostenpflichtigen Version deepl Pro

[17] Jupyter Notebooks (2021) https://jupyter.org/, zugegriffen am 02.12.2022

[18] Colab (2021) https://colab.research.google.com/

[19] Soares L (2022) Summarizing Papers With Python and GPT-3, https://medium.com/p/2c718bc3bc88, zugegriffen am 22.07.2022

AI & M 4.0: Das nicht-teilbare Sein – Auf dem Weg zu einer ganzheitlichen Ethik?

Unsere Glaubenssätze haben uns fest im Griff:

„Autobahn ohne Tempolimit, ist Ausdruck unserer deutschen Freiheit.“, „Jedem Bürger seine Waffen, ist Ausdruck amerikanischer Freiheit.“, „Klimawandel ist das Hirngespinst der Grünen.“

oder

„Maschinen sind allenfalls kompliziert, aber nicht komplex. Wir sind komplex.“, „Die belebte Natur ist was ganz anderes als die unbelebte Natur“, „Wir Menschen haben Bewusstsein, sonst niemand und nichts.“ „Wir Menschen sind die Krönung der Schöpfung.“ „Management und Führung sowie AI schließen sich aus.“

Sehr oft sind diese Glaubenssätze mit unserer Fähigkeit verbunden, Kategorien zu bilden, wie komplex-nicht komplex, belebt-unbelebt, bewusst-unbewusst, wertvoll-weniger wertvoll, emotional-mechanisch.

Ich habe einen Glaubenssatz, es ist wieder nur ein Glaubenssatz 😉, der insbesondere diese letzten Glaubenssätze auflöst. – Ich glaube, dass unser Sein nicht-teilbar ist. Ich will versuchen, diesen Glaubenssatz zu erläutern, in dem ich die letzten oben genannten Glaubenssätze aus dieser Perspektive betrachte:

(Mechanische) Maschinen zeigen tatsächlich, unter normalen Bedingungen, lediglich einfaches oder kompliziertes Verhalten. – Sie sind gerade so konzipiert, dass sie kein komplexes Verhalten zeigen sollen. Jedoch nicht selten zeigen sie es, wenn sie unter „Stress“ geraten.- „Stress“ heißt in diesem Fall, die Maschinen geraten in den Grenzbereich ihrer Nutzung. Es gibt aber auch immer mehr Maschinen, also von uns Menschen hergestellte Systeme, wie z.B. den Laser oder die AI Systeme, die gerade auf Komplexität und der damit verbundenen Selbstorganisation beruhen. Der Glaubenssatz, dass nur lebende oder soziale Objekte komplex sind, ist unserer bisherigen Naivität und unserer Mensch-Zentrierung geschuldet.  

Nach der „Erschaffung“ der unbelebten Natur vor einigen Milliarden Jahren, gab es meines Erachtens keinen Eingriff eines Gottes oder Etwas Ähnliches, das der unbelebten Natur Leben einhauchte.- Und damit neue (uns noch weitgehend unbekannte) Prinzipien des Lebens explizit neu einbrachte. Vielmehr glaube ich, dass die unbelebte Natur alles enthält, um belebte Natur zu entwickeln.

Ähnlich glaube ich, dass die (uns ebenfalls noch unbekannten) Prinzipien, die zu Bewusstsein führen, schon in der unbelebten und belebten Natur vorhanden sind. – Und, dass wir Menschen lediglich ein Produkt der Entfaltung der fundamentalen Prinzipien des Seins sind.  Damit ist auch gleichzeitig gesagt, dass wir wahrscheinlich nicht das letzte Produkt dieser Entfaltung sind, sondern vielleicht lediglich ein Zwischenergebnis.

Die Kategorien-Bildung hilft uns, die Welt Stück für Stück besser zu verstehen und Stück für Stück auf fundamentalere Prinzipien zurückzuführen. – Leider bleiben wir oft an den Kategorien vergangener Erkenntnis kleben und weisen ihnen eigenständige fundamentale Prinzipien zu.

Vor kurzem ging durch die Presse, dass AI Entwickler behaupten, dass große AI Systeme Bewusstsein entwickelt haben oder zu mindestens „ein bisschen davon“.  – Andere tun dies wiederum als völligen Unsinn ab [1], [2]. Da wir bisher nicht wissen, was Bewusstsein ist, können wir auch nicht sagen, ob es schon AI Systeme mit Bewusstsein oder „ein bisschen Bewusstsein“ gibt. Entsprechend meinem obigen Glaubenssatz glaube ich jedoch, dass es irgendwann AI Systeme mit Bewusstsein geben wird, ob morgen oder erst in 1000 Jahren vermag ich nicht zu sagen. Da unser Sein ein nicht-teilbares Sein ist, glaube ich, dass es nur eine Frage der Zeit ist, bis von uns geschaffene Systeme mit Bewusstsein existieren werden. Der Deep-Learning-Pionier Yann LeCun hat auch schon wieder einen (altbekannten) Lösungsweg aufgetan: Bewusstsein benötigt eine System-Architektur, die unserer Gehirn-Architektur nachempfunden ist [3].

Schon heute erscheinen täglich neue Meldungen, zu den erstaunlichen Aussagen und Leistungen von AI Systemen. So betont beispielsweise eine Zeitschrift die Gefahren, die von AI Systemen ausgehen können, indem sie titelt „Künstliche Intelligenz droht im Gespräch „die Menschen auszuschalten““ [4]. In der sehr seriösen Zeitschrift Scientific American war unlängst von einer AI zu lesen, die einen wissenschaftlichen Artikel über sich selbst geschrieben hat.- Die Entwickler der AI haben diesen Artikel als wissenschaftlichen Artikel zum Peer-Review eingereicht [5].

Man stelle sich nur vor, die Entwicklung der AI würde ähnlich schnell und fundamental weiter gehen wie in den letzten 10 Jahren und in 10 Jahren hätten wir AI Systeme mit einer Allgemeinen Künstlichen Intelligenz, die zudem (erste) Anzeichen von Bewusstsein zeigen würde. Müssten wir dann unsere menschenzentrierte Ethik nicht völlig neu denken. Denn es kämen dann zwangsläufig Fragen auf wie „Ist es ethisch vertretbar, eine AI mit Bewusstsein bei Bedarf abzustellen?“, oder „Müssten wir solchen AI Systemen Rechte einräumen?“.

Wie in meinem Blog-Beitrag vom Februar 2022 dargelegt, ist die bisherige angedachte Ethik der EU zu AI Systemen eine human-centric perspective.

Der sogenannte EU AI Act basiert auf den europäischen Werten und soll insbesondere die Menschen vor Schaden schützen [6]:

“Aside from the many beneficial uses of artificial intelligence, that technology can also be misused and provide novel and powerful tools for manipulative, exploitative and social control practices. Such practices are particularly harmful and should be prohibited because they contradict Union values of respect for human dignity, freedom, equality, democracy and the rule of law and Union fundamental rights, including the right to non-discrimination, data protection and privacy and the rights of the child.

Ziel der EU ist es, AI Systeme zu erlauben, denen wir trauen können, also sogenannte Trustworthy AI. An dieser Forderung ist „fast“ nicht auszusetzen, wenn man davon absieht, dass die Natur und die Tiere lediglich in drei Sätzen eines ca. 100 Seiten starken Proposal Dokumentes auftauchen.

Warum ist mir eine ganzheitliche Sicht mit entsprechender Ethik so wichtig?  Um diese Frage zu beantworten, möge man sich nur Folgendes fragen: Welche Ethik und damit Rechtsverständnis macht(e) es möglich, dass über Jahrzehnte das millionenfache Töten von männlichen Küken durchgeführt wurde? Welche Ethik und damit Rechtsverständnis macht(e) es möglich, dass Bauern das Grundwasser durch Überdüngung belasten dürfen?

Heute ist aus diesen unethischen Gewohnheiten Gewohnheitsrecht geworden. Es basieren Geschäftsmodelle auf diesem Mangel an ganzheitlicher Ethik und es bedarf enormer Anstrengungen, dieses Gewohnheitsrecht durch ein ethisch fundiertes Recht abzulösen. Denn der Mangel an einer ganzheitlichen Ethik hat dazu geführt, dass wir uns immer wieder in verschiedene Dilemmata bringen: Z.B. stellt sich die Frage, ob es erlaubt ist, die Lebensgrundlage der Bauern zu gefährden, in dem wir das Grundwasser (nachträglich) schützen. Wäre es nicht sinnvoll gewesen, den Schutz des Grundwassers von vorneherein zu gewährleisten und den Bauern und der Gesellschaft die Möglichkeit zu geben, ganzheitliche ethische Geschäftsmodelle zu entwickeln.  

Die Diskussion zur AI Ethik [7] und die damit verbundenen Rechtsvorschläge, wie den EU AI Act, beruhen auf keiner ganzheitlichen Ethik: Die Rechte von Natur und Tieren sind nicht berücksichtigt und die ethischen Konsequenzen, die sich aus einer möglichen Entwicklung von AI Systemen in Richtung einer Allgemeinen Künstlichen Intelligenz ergeben, sind noch nicht einmal ansatzweise enthalten.     

Ich komme zur aktuellen Version des Proposals EU AI Act zurück und skizziere die schon heute absehbaren großen Anforderungen an das (Projekt) Management:

Als guten Einstieg in den EU AI Act [6] dient das sogenannte Briefing des European Parliamentary Research Service [8]: Der EU AI Act ist ein Risiko-basierter Ansatz, in dem AI-Systeme in vier Risikokategorien eingeteilt werden: „AI systems posing (i) unacceptable risk, (ii) high risk, (iii) limited risk, and (iv) low or minimal risk.“ Eine genaue Definition, wann welche Kategorie vorliegt, gibt es leider nicht, jedoch gibt es Beispiele, insbesondere zur Kategorie „unacceptable risk“ und „high risk“:

Unacceptable risk AI Systeme sind in der EU verboten, z.B. [6, 8]:

  • AI systems that deploy harmful manipulative ’subliminal techniques‘
  • AI systems that exploit specific vulnerable groups (physical or mental disability)
  • AI systems used by public authorities, or on their behalf, for social scoring purposes
  • ‚Real-time‘ remote biometric identification systems in publicly accessible spaces for law enforcement purposes, except in a limited number of cases

High-risk AI Systeme sind erlaubt, unterliegen jedoch sehr strengen Auflagen, z.B. [6,8]:

  • High-risk AI systems used as a safety component of a product or as a product falling under Union health and safety harmonisation legislation (e.g. toys, aviation, cars, medical devices, lifts)
  • High-risk AI systems deployed in eight specific areas identified in Annex III of the EU AI Act, which the Commission would be empowered to update as necessary by way of a delegated act
    • Biometric identification and categorisation of natural persons
    • Management and operation of critical infrastructure
    • Education and vocational training
    • Employment, worker management and access to self-employment
    • Access to and enjoyment of essential private services and public services and benefits
    • Law enforcement
    • Migration, asylum and border control management
    • Administration of justice and democratic processes

Die EU High-Level Expert Group on Artificial Intelligence hat den “Mangel” an Operationalisierbarkeit des EU AI Act erkannt und das Dokument „Ethics Guidelines for Trustworthy AI“ erstellt [9]. Spätestens beim Lesen dieses Dokumentes wird einem sehr schnell klar, dass der EU AI Act für Organisationen und insbesondere hier das Projekt-, Risiko- und Qualitätsmanagement weitreichende Konsequenzen haben wird. Die Transparenz-, Dokumentations- und Monitoring-Anforderungen während des gesamten (!) Lebenszyklus eines AI Systems (alleinstehend oder embedded) sind enorm. Ich verweise auf [9] und die darin enthaltene mehrseitige Checkliste.

Ich stelle die Frage, zu welcher Kategorie gehören die beiden Machbarkeitsprototypen, die ich in den letzten beiden Blog-Beiträgen vorgestellt habe? – Und gebe einen ersten Einblick in die in dem EU AI Act enthaltenen Anforderungen.

Gehe ich von den oben auf geführten Beispielen aus, so gehören meine Machbarkeitsprototypen in die high-risk Kategorie „Education and vocational training“ und in die Kategorie „worker management“. In [9] ist die Abbildung 1 enthalten, die die zentralen Anforderungen an eine Trustworthy AI enthält:

Ich skizziere anhand dieser Abbildung meine Einschätzung bezüglich der Vertrauenswürdigkeit der beiden Machbarkeitsprototypen:

Abbildung 1: The Guidelines as a framework for Trustworthy AI [9]

 

Collective Mind proxy auf der Basis der Similarity Matrix

Collective Mind Netzwerk auf der Basis eines Graphical Networks

Ethical Principles

 

 

Respect for human autonomy

Die menschliche Autonomie wird nicht aktiv eingeschränkt, Kritiker könnten jedoch einwenden, dass die Quantifizierung von Ähnlichkeit in den Aussagen zu einer passiven Autonomieverletzung führt.

Die menschliche Autonomie wird weder aktiv noch passiv in der aktuellen Version eingeschränkt. Es lassen sich jedoch Zuordnung von Begriffen und Personen vornehmen, so dass die Kritik der passiven Autonomieeinschränkung je nach Nutzung evtl. vorhanden ist.

Prevention of harm

Physischer Schaden kann nicht eintreten. Psychischer Schaden könnte eintreten, wenn die vorhandene oder nicht vorhandene Similarity von Vorgesetzten/Kollegen als Druckmittel eingesetzt wird.

Physischer Schaden kann nicht eintreten. Psychischer Schaden könnte eintreten, wenn eine Verbindung zwischen Person und graphischen Netzwerkknoten von Vorgesetzten/Kollegen mit amoralischer Absicht benutzt wird.

Fairness

Das AI System trifft keine unfairen Aussagen, jedoch könnte dies evtl. durch beteiligte Stakeholder, wie oben geschildert, erfolgen.

Das AI System trifft keine unfairen Aussagen, jedoch könnte dies evtl. durch beteiligte Stakeholder, wie oben geschildert, erfolgen.

Explicability

Die Verständlichkeit und Transparenz des Algorithmus ist (nahezu) vollständig gegeben, auch wenn man berücksichtigen sollte, dass diverse Fremd-Softwaremodule (u.a. word2vec, spaCy) verwendet werden.

Die Verständlichkeit und Transparenz des Algorithmus ist (nahezu) vollständig gegeben, auch wenn man berücksichtigen sollte, dass diverse Fremd-Softwaremodule (u.a. spaCy, Transformer Pipeline) verwendet werden.

7 Key Requirements

 

 

Human agency and oversight

Die Anwendung der AI liegt vollkommen in den Händen der Nutzer. Dies setzt voraus, dass die Ergebnisse der Anwendung nur den direkten Nutzern zugänglich gemacht werden.

Die Anwendung der AI liegt vollkommen in den Händen der Nutzer. Dies setzt voraus, dass die Ergebnisse der Anwendung nur den direkten Nutzern zugänglich gemacht werden.

Technical robustness and safety

Die Anwendung ist äußerst robust (u.a. gibt es kein AI Lernen während des Betriebs) und hat keine sicherheitsrelevanten Auswirkungen.

Die Anwendung ist äußerst robust (u.a. gibt es kein AI Lernen während des Betriebs) und hat keine sicherheitsrelevanten Auswirkungen.

Privacy and data governance

Es werden keinerlei persönliche Daten erhoben, wenngleich die Daten mittels weiterer Techniken oder manuell Personen zugeordnet werden können und damit prinzipiell auch eine indirekte Verletzung der Privatsphäre möglich ist. Um dies zu verhindern ist eine data governance in nutzenden Organisationen erforderlich.

Es werden keinerlei persönliche Daten erhoben, wenngleich die Daten mittels weiterer Techniken oder manuell Personen zugeordnet werden können und damit prinzipiell auch eine indirekte Verletzung der Privatsphäre möglich ist. Um dies zu verhindern ist eine data governance in nutzenden Organisationen erforderlich.

Transparency (Diese Schlüsselanforderung ist direkt eine Konsequenz des ethischen Prinzips Explicability.)

Wie in [10] dargelegt hängt die Transparenz von mehreren Faktoren ab: Erklärbare Algorithmen, Einsicht in den Trainingsdatensatz, Einsicht in die Datensatzauswahl, Erkennen von Mentalen Verzerrungen im ausgewählten Datensatz, Transparenz bzgl. der verwendeten Modellversionen.

Bzgl. word2vec, spaCy ist die Umsetzung dieser Anforderungen mit meinen Zugriffsrechten und meinem Kenntnisstand nicht möglich. Da das Ergebnis jedoch lediglich ein word-embedding darstellt, erscheint mir der potenzielle Missbrauch äußerst gering.

Wie in [10] dargelegt hängt die Transparenz von mehreren Faktoren ab: Erklärbare Algorithmen, Einsicht in den Trainingsdatensatz, Einsicht in die Datensatzauswahl, Erkennen von Mentalen Verzerrungen im ausgewählten Datensatz, Transparenz bzgl. der verwendeten Modellversionen.

Bzgl. Transformator Pipeline und spaCy ist die Umsetzung dieser Anforderungen mit meinen Zugriffsrechten und meinem Kenntnisstand nicht möglich. Da das Ergebnis jedoch lediglich einen Graph darstellt erscheint mir der potenzielle Missbrauch äußerst gering.

Diversity, non-discrimination and fairness

Das AI System nimmt keine wie auch immer geartete Diskriminierung vor: Jedoch könnte durch die entstandene Transparenz im Meinungsspektrum und einer entsprechenden Zuordnung zu Personen, Missbrauch möglich sein.

Das AI System nimmt keine wie auch immer geartete Diskriminierung vor: Jedoch könnte durch die entstandene Transparenz im Meinungsspektrum und einer entsprechenden Zuordnung zu Personen, Missbrauch möglich sein.

Societal and environmental wellbeing

Gesellschaft und Umwelt werden in keiner Form beeinflusst. Sollten solche oder ähnliche Systeme eingesetzt werden ist jedoch zu beachten, dass evtl. die Akzeptanz oder Nicht-Akzeptanz für AI-System steigt. Eine unreflektierte Nutzung ohne ein Minimum an technischer und ethischer Bildung erscheint nicht sinnvoll, da dies mit unbekannten Risiken verbunden sein kann. Man siehe auch die entsprechenden Anforderungen bzgl. Professionalisierung von Teams bzgl. AI und Ethik in [7].

Gesellschaft und Umwelt werden in keiner Form beeinflusst. Sollten solche oder ähnliche Systeme eingesetzt werden ist jedoch zu beachten, dass evtl. die Akzeptanz oder Nicht-Akzeptanz für AI-System steigt. Eine unreflektierte Nutzung ohne ein Minimum an technischer und ethischer Bildung erscheint nicht sinnvoll, da dies mit unbekannten Risiken verbunden sein kann. Man siehe auch die entsprechenden Anforderungen bzgl. Professionalisierung von Teams bzgl. AI und Ethik in [7].

Accountability

Der EU AI Act sieht die Rechenschaftspflicht sehr stark beim Hersteller der AI Systeme. Ich empfehle, dass daneben eine Rechenschaftspflicht der nutzenden Organisation tritt, denn so wie man ein Messer zum Aufschneiden eines Apfels oder alternativ zum Töten eines Menschen benutzen kann, kann man jedes AI System unethisch anwenden.

Der EU AI Act sieht die Rechenschaftspflicht sehr stark beim Hersteller der AI Systeme. Ich empfehle, dass daneben eine Rechenschaftspflicht der nutzenden Organisation tritt, denn so wie man ein Messer zum Aufschneiden eines Apfels oder zum Töten eines Menschen benutzen, kann man jedes AI System unethisch anwenden.

Zusammenfassend stelle ich fest, dass eine ganzheitliche Ethik u.a. im Lichte aktueller AI Entwicklungen notwendig ist, dass ein Mangel an ganzheitlicher Ethik hohe Risiken in sich birgt, und dass der EU AI Act nur ein erster Schritt in diese Richtung ist. Gleichwohl sind die Anforderungen an das Management schon mit der aktuellen Proposal Version des EU AI Act sehr groß.

[1] Stieler W (2022) Hat KI bereits eine Art Bewusstsein entwickelt? Forscher streiten darüber, https://www.heise.de/hintergrund/Hat-KI-bereits-eine-Art-Bewusstsein-entwickelt-Forscher-streiten-darueber-6522868.html , zugegriffen am 22.07.2022

[2] Eisenlauer M (2022) google Entwickler sicher – Künstliche Intelligenz hat eigenes Bewusstsein, https://www.bild.de/digital/computer/computer/hat-googles-kuenstliche-intelligenz-lamda-ein-bewusstsein-entwickelt-80393376.bild.html

[3] Dickson B (2022) Meta’s Yann LeCun on his Vision for human-level AI, TechTalks, https://bdtechtalks.com/2022/03/07/yann-lecun-ai-self-supervised-learning/, zugegriffen am 06.07.2022

[4] Mey S (2022) Künstliche Intelligenz droht im Gespräch „die Menschen auszuschalten“, DerStandard, https://www.derstandard.de/story/2000136591877/kuenstliche-intelligenz-droht-im-gespraech-die-menschen-auszuschalten?ref=rss , zugegriffen am 06.07.2022

[5] Thunström A O (2022) We Asked GPT-3 to Write an Academic Paper about Itself—Then We Tried to Get It Published, Scientific American, https://www.scientificamerican.com/article/we-asked-gpt-3-to-write-an-academic-paper-about-itself-then-we-tried-to-get-it-published/, zugegriffen am 06.07.2022

[6] EU AI Act (2022) https://artificialintelligenceact.eu/, Europe Administration, zugegriffen am 06.07.2022

[7] Blackman R (2022) Ethical Machines: Your concise guide to totally unbiased, transparent and respectful AI, Harvard Business Review Press, kindle edition

[8] European Parliamentary Research Service (2022) Briefing EU AI Act, https://www.europarl.europa.eu/thinktank/en/document/EPRS_BRI(2021)698792

[9] High-Level Expert Group on Artificial Intelligence (2022) ETHICS GUIDELINES FOR TRUSTWORTHY AI, https://ec.europa.eu/futurium/en/ai-alliance-consultation.1.html [10] Schmelzer R (2022) Towards a more transparent AI, Forbes, https://www.forbes.com/sites/cognitiveworld/2020/05/23/towards-a-more-transparent-ai/?sh=725c89d33d93

[10] Schmelzer R (2022) Towards a more transparent AI, Forbes, https://www.forbes.com/sites/cognitiveworld/2020/05/23/towards-a-more-transparent-ai/?sh=725c89d33d93