AI & M 4.0: Zur Erweiterung unserer Intelligenz und Realität durch Machine Learning (ML) und Artificial Intelligence (AI) im Management 4.0

Der ehemalige amerikanische Außenminister Kissinger sowie der ehemalige Google CEO Schmidt und der MIT Professor Huttenlocher haben zusammen vor ein paar Tagen ein bemerkenswertes Buch zu unserer Zukunft im Zeitalter der künstlichen Intelligenz herausgebracht. – Ich nenne wesentliche Aussagen dieses Buches [1]:

  • Machine Learning (ML) und Artificial Intelligence (AI) basieren auf völlig anderen Prinzipien als „klassische“ Software: Im Rahmen vorgegebener Selbstorganisations-Parameter (und Daten) organisiert sich eine AI selbst. – Sie bildet durch Training Modelle zu den eingegebenen Daten, also der ausgewählten Realität, ab. – Diese Modelle sind nicht perfekt, sie liefern Wahrscheinlichkeitsaussagen. – Und damit haftet diesen Modellen unmittelbar Unsicherheit an! – Gar nicht so unähnlich unserer Intelligenz!
  • Systeme künstlicher Intelligenz erkennen schon heute Muster in unsrer Realität, die unserer Intelligenz (bisher) verschlossen waren. – AI bildet erfolgreich Schachstrategien aus, die bisher kein Mensch verwendet hat oder findet wirksame Medikamente, die bisher unentdeckt geblieben sind, oder hilft Prinzipien der Physik und Mathematik zu entdecken usw. 
  • AI wird unsere Sicht auf die Realität wesentlich verändern, nicht nur quantitativ, sondern vor allem auch qualitativ! – Und dies in zweierlei Hinsicht: Die Entwicklung von AI sorgt für die Integration verschiedener Disziplinen wie Psychologie, Sozialwissenschaften, Naturwissenschaften, Informatik, Mathematik sowie Philosophie und führt in den jeweiligen Disziplinen zu neuen Erkenntnissen und Anwendungen.
  • Gesellschaftliche Systeme werden sich substanziell unterschiedlich entwickeln, je nachdem, ob in welchem Maße und in welcher Qualität ML/AI eingesetzt wird. – Dies wird sich zum einen auf globaler Ebene zeigen, und zum anderen wird es auch eine neue „Schichtung“ der Gesellschaft(en) entlang der individuellen ML/AI Kompetenzen hervorrufen. – Derzeit gibt es nur zwei relevante ML/AI Ecosysteme: USA und China. – Und diese Ecosysteme formen mit ihren ML/AI Systemen unsere (europäische) Zukunft!

Falls jemand diese Aussagen anzweifelt, so möge er sich die Internetseite von DeepMind [2] oder der AI community DeepAI [3] ansehen – die Zweifel dürften sehr schnell verschwinden.

Seit ein paar Monaten konfiguriere bzw. programmiere ich ML/AI Systeme, also Physical Technologies. – Ich tue dies auf der Basis des amerikanischen ML/AI Ecosystems, insbesondere von Google’s Colab [4], Python [5] und Jupyter Notebooks [6]: Ich lote aus, inwieweit diese Physical Technologies helfen könnten, die Social Technology Management 4.0 gemäß den obigen Aussagen zukunftsfähig zu machen. – Das heißt, die Management 4.0 Intelligenz durch ML/AI quantitativ und qualitativ zu erweitern.

Im Tun wird einem sehr schnell bewusst, dass das europäische ML/AI Know-How ganz wesentlich vom amerikanischen ML/AI Ecosystem dominiert wird. – Das amerikanische ML/AI Ecosysteme von Google, Facebook/Meta Platforms, Microsoft und Co. ist überwältigend! – Es gibt eine Vielzahl an öffentlich zugänglichen Plattformen mit einer enormen Anzahl von vortrainierten ML/AI Modellen, unzähligen Tutorials und Code-Beispielen. – Selbst die Nutzung generativer Natural Language Processing (NLP) Systeme der neuesten Generation oder sogar die Anbindung an Quantencomputing ist prinzipiell möglich.

Das amerikanische ML/AI Ecosystem ermöglicht auch Personen wie mir, deren ML/AI Know-how Lichtjahre vom google Know-how entfernt ist, in überschaubaren Schritten in die ML/AI-Welt einzusteigen. Google, Meta Platforms, Microsoft und Co. haben damit einen gesellschaftlichen Innovations-Feedback Mechanismus angestoßen, der der (amerikanischen) Gesellschaft – zumindest einem gewissen Teil davon – einen enormen Innovationsschub gibt: Das ML/AI Ecosystem trägt zu immer schnelleren und qualitativ neuartigen ML/AI Entwicklungen bei, teilweise sogar zu ML/AI Technologie-Revolutionen – man siehe [2] und [3].

Auch wenn nicht wenige Europäer zum amerikanischen ML/AI Ecosystem beitragen, so wurde mir im Tun „schmerzlich“ bewusst, dass wir Europäer auf der Ebene der gesellschaftlichen ML/AI Ecosysteme keine Rolle spielen. – Auch wenn es „kleine“ lokale ML/AI Ecosysteme wie das Tübingen AI Center gibt [6].
Mir sind keine öffentlich zugänglichen europäischen ML/AI Plattformen bekannt. Gerade im Natural Language Processing (NLP) Bereich gibt es nur wenige vortrainierte Modell für europäische Sprachen oder die deutsche Sprache. (Nahezu) alle Tutorials sind in Code und Daten auf den Englisch-sprachigen Bereich ausgerichtet…Dies dürfte nicht nur mir sehr viel mühsame Transferarbeit bescheren!

Man mag das amerikanische ML/AI Ecosystem durchaus auch kritisch sehen, jedoch kann man Google und Co. mit ihrer ML/AI open source Philosophie nicht absprechen, dass Sie einen erheblichen Beitrag für die (ML/AI-) Entwicklung der amerikanischen und auch westlichen Gesellschaft leisten. Schaue ich auf die deutsche Unternehmenslandschaft, so zahlen unsere Unternehmen nach meinem Wissen auf kein gesellschaftliches ML/AI Ecosystem ein. – Unsere deutsche (unternehmerische) Gesellschaft wird nach wie vor von Silo-Denken, Silo-Geschäftsmodellen und Silo-Handeln bestimmt. Das heißt auch, dass gemäß [1] die Entwicklung der europäischen Gesellschaft über kurz oder lang einen Mangel an erweiterter Intelligenz und erweiterter Realität spüren wird, falls dieser Mangel nicht schon jetzt vorhanden ist.

Die obigen Aussagen aus [1] entsprechen meiner Erfahrung und Wahrnehmung und sind ein Motiv, sich um die Verbindung von AI und Management 4.0 (AI & M 4.0) zu kümmern: AI kann dem Projektleiter sowie dem Team assistieren und, was vielleicht noch viel wichtiger ist, mentale Feedback Mechanismen anstoßen, die die kognitive menschliche Projekt- und Management-Intelligenz erweitern. Damit geht einher, dass das menschliche Bewusstsein sich erweitert und mentale wie gesellschaftliche Transformationen angestoßen und begleitet werden. – Die wahrgenommene Realität insbesondere in komplexen Projekten wird sich nach meiner Einschätzung durch ML/AI erheblich erweitern.

Ich liste im Folgenden AI & M 4.0 Anwendungskategorien, die nach meinem aktuellem Wissensstand für das (Projekt) Management von Bedeutung sein werden.- Ich kennzeichne die Kategorien durch AI/ML und eine fortlaufende Nummer. – Man siehe hierzu auch die phasenorientierte Zuordnung von PM Aktivitäten und AI/ML Techniken in [8].

AI/ML 1 – Numerische Feature-Multilabel (supervised) AI: Ein Sachverhalt wird über numerische Datenkategorien (Features) beschrieben und Anwendungstypen oder Klassen (man spricht von Labels) zugeordnet. Zum Beispiel nimmt ein AI System eine Aufwands- oder Kostenschätzung vor. Hierzu werden die Aufgaben gemäß bestimmter numerischer Features beschrieben und einer Aufwandsklasse, also einem Label, zugeordnet. Supervised bedeutet hier, dass die AI mit einer Feature-Label Zuordnung trainiert wird, die durch Menschen vorher vorgenommen wurde. Hierbei ist es meines Erachtens jedoch nicht notwendig, zuerst jahrelang solche Zuordnungen, also Daten zu sammeln. Die AI könnte vielmehr in laufende Aufwandsschätzungen gemäß Delphi oder Planning Poker eingebracht werden, im Wissen, dass die AI sich wahrscheinlich langsam aufbaut.    

AI/ML 2 – Text-Multilabel (supervised) Natural Language Processing AI: Ein Sachverhalt wird über Text bzw. Sprache beschrieben und Labels zugeordnet. Auch eine Aufwandsschätzung könnte auf diese Weise durch AI vorgenommen werden.- Die zu schätzenden Aufgaben liegen als Textbeschreibungen vor und für das Training werden durch Menschen Label-Zuordnungen vorgenommen. Text und Label werden im AI-Training verarbeitet. – Die AI ist also in der Lage natürliche Sprache (Natural Language Processing (NLP)) zu verarbeiten. Ein anderes Bespiel ist die Analyse von Verhalten, beschrieben in Textform und die Zuordnung zu Persönlichkeitslabels (Temperament, Werten, Grundannahmen, Glaubenssätzen, Prinzipien). – Die nachträgliche Analyse von Verhalten durch niedergeschriebenen Text ist relativ „einfach“.  – Eine direkte Analyse der Kommunikation z.B. während einer Teamsitzung ist jedoch wesentlich anspruchsvoller und entzieht sich derzeit (noch 😉) meinem Kenntnisstand. – Selbstverständlich kann auf dieser Basis auch eine organisationale Kulturanalyse vorgenommen werden, indem die Kommunikation (Gesprochenes, Dokumente, eMail, Chat) im Team oder in der Organisation ausgewertet wird.  

AI/ML 3 – Graph Neural Networks bzw. Graphen-Multilabel (supervised) AI: Sehr viele Sachverhalte in Natur, Sozialem und Technik lassen sich über Graphen bzw. Netzwerke beschreiben [9, 10]. Soziale Systeme bzw. Organisationen lassen sich gut über Social Networks darstellen. Der Projektstrukturplan bzw. der Projektplan sind spezielle Graphen. Die Zielhierarchie ist eine weiterer Graph. Zum Beispiel lassen sich aus der Kommunikation der Stakeholder Social Networks ableiten und diese Social Networks oder Social Networks Bausteine werden mit Labels versehen und dienen dem Training von AI/ML. Ein anderes Beispiel ist die Extraktion der Zielhierarchie aus einer Teamkommunikation und die anschließende „Überprüfung der Einhaltung“ der Zielhierarchie in der Stakeholderkommunikation. Oder, das Social Network eines Teams wird Performance Labels (z.B. Hochleistung, mittlere Leistung, dysfunktionale Leistung) zugeordnet.  

AI/ML 4 – Team-Sprachanalyse (unsupervised) AI: Die Sprache in Teams oder Stakeholdergruppen wird auf Gemeinsamkeiten untersucht. So lässt sich u.a. aus der Wortwahl von Teammitgliedern u.a. mittels der Bag of Word und word embedding Technologien auf deren „mentale Verwandschaft“ oder das Collective Mind schließen.

AI/ML 5 – Generative NLP (unsupervised) AI: Mittels generativer NLP AI Systeme [11, 12] lassen sich u.a. Vertragsdokumente bzw. Claim-Dokumente mittels weniger von Menschen eingegebener zentraler Prinzipien generieren. Diese Systeme können auch dazu benutzt werden, Abweichungen (also Vertrags- und Claimrisiken) zu identifizieren.

AI/ML 6 – Clustering (unsupervised) AI: Die AI clustered numerische oder Textdaten. Diese Cluster zeichnen sich durch charakteristische Cluster Eigenschaften aus und erlauben damit das Erkennen von Mustern in den Daten. Auf diese Weise können zum Beispiel Projekte, Aufgaben oder auch Stakeholder geclustert werden. – Einen ersten Eindruck von der Fähigkeit Neuronaler  Netzwerke zu clustern, bietet die „Spielumgebung“ von Tensorflow [13].

Diese sechs Kategorien lassen sich auch kombinieren, sei es, um ergänzende Informationen zu erhalten oder eine sogenannte AI/ML Verarbeitungspipeline aufzubauen.

Ich erwarte, dass mit gewonnener Erfahrung diese sechs Kategorien detailliert werden und auch weitere Kategorien hinzukommen.

Ich verwende diese sechs AI/ML Kategorien, um AI & M 4.0 zu beschreiben: Ich tue dies unter Verwendung der IPMA ICB 4.0 Kompetenzen [14] bzw. der Kompetenzen des Handbuches Kompetenzbasiertes Projektmanagement (PM4) der GPM [15]. Die nachfolgende Tabelle listet AI & M 4.0. Die Tabelle ist sicherlich nicht vollständig. – Sie gibt den aktuellen Stand meiner Überlegungen wieder; sie dürfte sich also noch ändern.

Die Tabelle zeigt, dass schon heute mit entsprechendem Know-how die (Projekt) Management Intelligenz und Realität deutlich erweitert werden kann. – Mit einem AI Know-How, das im amerikanischen ML/AI Ecosystem abrufbar ist.

Die kursive Schrift in der Tabelle zeigt an, dass in diesen Fällen eine Bearbeitung durch die GPM Fachgruppe Agile Management begonnen wurde.

Perspective – KontextkompetenzenAI & M 4.0: Erweiterte Management 4.0 Intelligenz und Realität mittels ML/AI
Strategie 
Governance, Strukturen und Prozesse 
Compliance, Standards und RegularienAI/ML 5: Ermittlung von Compliance und Risiken durch den Abgleich von Projektartefakten und Compliance-Dokumenten sowie Standards und Normen
Macht und Interessen 
Kultur und WerteAI/ML 2: Ermittlung des organisationalen Mindsets (Kultur) durch vortrainierte Neuronale Netzwerke (NN): transkribierte Sprache und Texte werden mittels eines Transformermodells wie BERT [16,17] einer Text-MultiLabel Analyse unterzogen. – BERT ist eines der wenigen Modelle, das auch in einer deutschen Sprachversion verfügbar ist.   In einem zweiten Schritt kann diese Information dazu benutzt werden, um die Heterogenität der Kultur in einer Organisation zu ermitteln. In dem vorhergehenden Blog-Beitrag habe ich dies als „Spinglass-Organisation“ bezeichnet.     
People – Persönliche und soziale Kompetenzen 
Selbstreflexion und SelbstmanagementAI/ML 2: Die Selbstreflexion und das Selbstmanagement wird durch einen Feedback Mechanismus zwischen AI und Projektmanager oder Teammitglied angestoßen. Die AI erweitert die Metakompetenz des PM und der Teammitgliedern, indem den Verhaltensweisen durch die AI Persönlichkeitsdimensionen (Temperament, Motive, Werte, Glaubenssätze) zugeordnet werden.
Persönliche Integrität und Verlässlichkeit 
Persönliche KommunikationAI/ML 2: Die Realität der Kommunikation verändert sich auf der Basis der veränderten Selbstreflexion. Zudem liefert die AI Informationen zu den Persönlichkeitsdimensionen aller kommunizierenden Teammitglieder.
Beziehungen und Engagement 
FührungAI/ML 2: Die Führungs-Metakompetenz wird erheblich erweitert, da Selbstreflexion und Kommunikation deutlich verbessert werden. – Die Decision Intelligence wird deutlich erweitert.   AI/ML 4: Die Team-Sprachanalyse ermittelt Gemeinsamkeiten und hilft Dysfunktionalitäten aufzudecken.   AI/ML 3: Social Networks werden mittels GNN (Graph Neural Networks) analysiert und gelabelt. Dies kann auf Teamebene und auf der Ebene aller Stakeholder erfolgen.
TeamarbeitAI/ML 4: Die Stärke des Collective Mind wird durch einen „Statthalter“ also eine proxy Collective Mind (proxyCM) abgebildet: CM ~ proxyCM. Als proxyCM können verschiedene Modelle dienen: Transkribierte Sprache von Teammitgliedern werden mittels sklearn [18] (Native Bayes Classification) den Teammitgliedern zugeordnet. Desto eindeutiger die Zuordnung ist, desto geringer ist das CM, oder anders ausgedrückt, falls ein Text mehreren Teammitglieder zugeordnet werden kann, so besteht ein „inhaltlicher Überlapp“. – Der proxyCM ist größer.   Des Weiteren können Redefrequenz und Redelänge als weitere Indikatoren für den proxyCM verwendet werden.   Mittels einer Bag of Word oder Word Vector Embedding Analyse [18, 19, 20, 21] wird die Wortwahl der Teammitglieder analysiert. Unterschiedliche Wortwahlen unterschiedlicher Teammitglieder zeigen ein schwaches proxyCM an, oder umgekehrt lassen ähnliche Begriffsschwerpunkte auf ein starkes proxyCM schliessen.    
Konflikte und KrisenAI/ML 2, 3, 4: Diese AI Erweiterungen der PM Intelligenz bzw. Metakompetenz sind auch gerade in Konflikten und Krisen von enormer Bedeutung
Vielseitigkeit 
VerhandlungenAI/ML 2, 3, 4: Diese AI Erweiterungen der PM Intelligenz bzw. Metakompetenz sind auch gerade in Verhandlungen von enormer Bedeutung. AI/ML 5: Zusätzlich ist es hilfreich Vertrags- und Claim-Dokumente einer AI Überprüfung zu unterziehen.
Ergebnisorientierung 
Practice – Technische Kompetenzen 
ProjektdesignAI/ML 6: Die AI ermittelt Komplexitätsklassen auf der Basis von numerischen und/oder textuellen Daten. Die Komplexitätsklassen sind die Basis des Projektdesigns
Anforderungen und Ziele 
Leistungsumfang und Lieferobjekte 
Ablauf und Termine 
Organisation, Information und Dokumentation 
Qualität 
Kosten und FinanzierungAI/ML 1, 2: Die Ermittlung von Aufwänden und Kosten gehört zu den „einfachen“ AI/ML Techniken. Lediglich die Beschaffung von Trainingsdaten ist vermutlich schwierig, da archivierte Projektdaten selten vorliegen.
Ressourcen 
Beschaffung 
Planung und SteuerungAI/ML 1: siehe Kosten und Finanzierung
Chancen und Risiken 
StakeholderAI/ML 2, 3, 4: Diese AI Erweiterungen der PM Intelligenz bzw. Metakompetenz sind für das Stakeholdermanagement von enormer Bedeutung
Change und TransformationAI/ML 2, 3, 4, 5: Hier können nahezu alle AI Techniken zum Einsatz kommen, um eine valide Entscheidungsbasis für Interventionen zu haben.
Tabelle: AI & M 4.0 unter Verwendung der ICB 4.0 / PM4 Kompetenzen

Die GPM Fachgruppe Agile Management sucht Mitglieder, die bereit sind, in die Untiefen 😉 der AI Erstellung, des Trainingsdaten Sammelns oder sogar der Anwendung im eigenen Unternehmen einzusteigen! – Wir freuen uns über eine Kontaktaufnahme unter agile-management@gpm-ipma.de!

[1] Kissinger HA, Schmidt E, Huttenlocher D (2021) The Age of AI: And Our Human Future, kindle edition
[2] DeepMind (2021) deepmind.com, zugegriffen am 02.12.2021
[3] DeepAI (2021) deepai.org, zugegriffen am 02.12.2021
[4] Colab (2021) https://colab.research.google.com/
[5] Python (2021) https://www.python.org/
[6] Jupyter Notebooks (2021) https://jupyter.org/, zugegriffen am 02.12.2021
[7] Tübingen AI Center (2021) tuebingen.ai, zugegriffen am 02.12.2021
[8] Nuhn H (2021) Organizing for temporality and supporting AI systems – a framework for applied AI and organization research, Lecture Notes in Informatics, GI e.V
[9] Veličković P (2021) Introduction to Graph Neural Networks, https://www.youtube.com/watch?v=8owQBFAHw7E, zugegriffen am 02.12.2021, man siehe auch petar-v.com
[10] Spektral (2021) https://graphneural.network/, zugegriffen am 02.12.2021
[11] GPT-3 (2021) https://openai.com/blog/openai-api/, zugegriffen am 09.12.2021
[12] Gopher (2021) https://deepmind.com/blog/article/language-modelling-at-scale,
[13] Neuronales Netzwerk „zum Spielen“ (2021) https://playground.tensorflow.org, zugegriffen am 02.12.2021
[14] GPM (2017) Individual Competence Baseline für Projektmanagement, IPMA, Version 4.0 / Deutsche Fassung
[15] GPM (2019) Kompetenzbasiertes Projektmanagement (PM4), Handbuch für Praxis und Weiterbildung im Projektmanagement
[16] Tensorflow (2021) google Entwicklungsplattform, https://www.tensorflow.org, zugegriffen am 02.12.2021
[17] BERT (2021) NLP Transformer Model BERT, https://huggingface.co/models, zugegriffen am 02.12.2021
[18] Scikit-learn (2021) https://scikit-learn.org/, zugegriffen am 02.12.2021
[19] Gensim-word2vec (2021) https://www.kaggle.com/pierremegret/gensim-word2vec-tutorial, zugegriffen am 02.12.2021
[20] Word-Vector-Visualisation (2021) https://www.kaggle.com/jeffd23/visualizing-word-vectors-with-t-sne/notebook, zugegriffen am 02.12.2021
[21] Spacy (2021) https://spacy.io/models/de, zugegriffen am 02.12.2021          

Metabetrachtungen: Zur Schnittmenge von diesjährigem Physik-Nobelpreis, Künstlicher Intelligenz und Collective Mind

Dieses Jahr wurde der Physik-Nobelpreis unter dem gemeinsamen Label „For groundbreaking contributions to our understanding of complex physical systems.“ an die Physiker Klaus Hasselmann und Syukuro Manabe sowie Giorgio Parisi vergeben. Es ist meines Wissens das erste Mal, dass das Verstehen von komplexen physikalischen Systemen so explizit honoriert wurde. Alle drei Forscher haben den Einfluss von mikroskopischen Zuständen auf makroskopische Zustände untersucht. Bei Klaus Hasselmann ging es um die Auswirkung von (lokalen) Wetterphänomenen auf (globale) Klimaphänomene. Also dem zentralen Problem unserer Tage. Syukuro Manabe wurde für die erstmalige computergestützte globale Klima-Modellierung geehrt.

Giorgio Parisi hat den Nobelpreis für seine Untersuchung von Spingläsern, insbesondere für seinen „great leap  … to introduce a new order parameter“ erhalten [1]. Seine Arbeiten ziehe ich für meine Metabetrachtungen heran.

Spin Gläser sind u.a. Legierungen wie CuMn, wobei das nichtmagnetische Kupfer (Cu) magnetisches Mangan (Mn) mit ca. 13% enthält. Die magnetischen Momente (Spin‘s) der Manganatome sind zufällig, aber fest im Kupferkristall verteilt. Zwischen den Manganatomen können ferromagnetische und antiferromagnetische Wechselwirkungen auftreten. – Je nach Konfiguration der Manganatome müssen diese mit ihren Nachbar-Manganatomen sowohl eine ferromagnetische als auch eine antiferromagnetische Wechselwirkung „befriedigen“. Dies kann auch Atome „frustrieren“. – Spingläser, also Substanzen, die bezüglich des Spins, wie Glas, amorphe Konfigurationen aufweisen und Frustrationen ausbilden, zeichnen sich (oft) nicht mehr nur durch einen einfachen Ordnungsparameter, wie die makroskopische Magnetisierung aus. – Sondern sie bilden viele mikroskopische Zustände aus, die mit dem Einstellen bestimmter Parameter (Rahmen- und Kontrollparameter) zu vielen unterschiedlichen Phasen mit jeweils unterschiedlichen Ordnungsparameter-Ausprägungen führen. Diese Ordnungsparameter-Ausprägungen genügen jedoch einem einheitlichen mathematischen Muster. – Parisi hat dieses „new order parameter“ Muster eingeführt [2].

Ich will versuchen dieses Muster am Beispiel einer sozialen Gruppe, an einem Team, zu erläutern.- Für den ein oder anderen mag dies Physikalismus sein [3], also der Versuch Alles und Jedes mittels Physik zu erklären; für mich ist es das Denken in Modellen und Theorien; und Metabetrachtungen helfen das ein oder andere qualitativ und quantitativ viel besser zu verstehen: Im Management 4.0 modellieren wir zentrale menschliche Eigenschaften mit der sogenannten Dilts Pyramide. Die Dilts Pyramide integriert hierbei ca. 30 unsere Persönlichkeit bestimmende Eigenschaften (Vision, Mission, Zugehörigkeit, Temperament, Werte, Glaubenssätze, Grundannahmen und Prinzipien). Stellen wir uns für den Moment die Pyramide (sie ist ja ein Keil, eine Spitze) als eine Ausrichtung unserer Persönlichkeit vor. Bilden wir eine Gruppe aus Personen mit unterschiedlichen Dilts Pyramiden, so bildet die Gruppe nicht selten (am Anfang) eine „Diltsglas-Organisation“: Die Pyramiden zeigen alle in unterschiedliche Richtungen. Recht selten geschieht es, dass die Pyramiden eine gemeinsame Ausrichtung erfahren, das Team sich also einen Ordnungsparameter, den Collective Mind, erarbeitet. Sehr oft führt die Gruppendynamik in einem Projektteam zu unterschiedlichen Kommunikationskonfigurationen (Zuständen): Unterschiedliche Visionen, Werte oder Glaubenssätze tauchen auf, nicht selten bleiben diese nebeneinander bestehen, ohne dass dies für die Gruppenmitglieder wirklich transparent wird. Damit verbunden sind, wie wir wahrscheinlich alle wissen, auch Frustrationen. Die Kommunikationskonfigurationen sind jedoch nicht beliebig. Die verschiedenen konfigurationsspezifischen Ausrichtungen der Dilts Pyramide der einzelnen Gruppenmitglieder haben nichtverschwindende „Überlappe“, z.B. mögen bestimmte Werte oder Glaubenssätze in verschiedenen Konfigurationen auftauchen. – Sie wirken als „mikroskopische“ Ordnungsparameter, die die makroskopische (Un-) Ordnung bestimmen. Man könnte also einen neuen Ordnungsparameter einführen, der den „Überlapp“ bei allen Teammitglieder misst und aufsummiert. – Damit hat man auch ein Maß für die „Diltsglas-Organisation“ des Teams. – Dieses Vorgehen entspricht dem von Parisi eingeführten neuen Ordnungsparameter für Spingläser. – Der Ordnungsparameter der „Diltsglas-Organisation“ ist damit auch ein Maß für die „Abweichung“ von einem einfachen Ordnungsparameter, dem Collective Mind, bei dem alle Dilts Pyramiden im Rahmen der Teamaktivitäten in eine Richtung zeigen.

Man kann die Analogie noch erweitern: Physikalische Spingläser können durch äußere magnetische Felder in der Ausbildung des Parisi-Ordnungsparameters beeinflusst werden. Auch „Diltsglas-Organisationen“ zeigen ein ähnliches Verhalten, wenn eine (äußere) Beeinflussung einsetzt: Führungskräfte oder Coaches wirken auf die Dilts Pyramiden des Teams ein. – Bei kleinen Einflussnahmen bleibt das „Diltsglas“ erhalten, steigt die Einflussnahme entsteht eine Ausrichtung, die aussieht wie ein Collective Mind. In den meisten Fällen dürfte die Ausrichtung jedoch wieder verschwinden, wenn die Einflussnahme zurückgeht, falls sich bis dahin keine intrinsische Veränderung im Team ausgebildet hat.  

Alles schön und gut, könnte man sagen: Warum macht es Sinn sich mit solchen Metabetrachtungen zu beschäftigen. In der Schrift des Nobel-Komitees [1] wird die Antwort gegeben. Die Modelle zur Erklärung von Spin-Gläsern haben heute sehr viele unterschiedliche Bereich erheblich befruchtet: Verschiedene Gebiete der Physik, der Biologie, der Chemie, der Neurowissenschaften und der Künstlichen Intelligenz. Für die Verbindung von Neurowissenschaften und Systemen Künstlicher Intelligenz wird explizit die Arbeit von John J. Hopfield in [1] genannt. Neuronale Netzwerke können auch als Spinglas Systeme verstanden werden, wenn man die magnetischen Momente durch Neuronen ersetzt. Die Wechselwirkungsparameter zwischen den Spins entsprechen den Gewichten zwischen den Ausgängen einer Neuronen Schicht und den Eingängen der nächsten Neuronen Schicht. Angelegte magnetische Felder entsprechen den Bias-Einstellungen der Neuronen. – Und wie oben geschildert, kann man die Grundprinzipien auch auf soziale Gruppen übertragen.

Die GPM Fachgruppe Agile Management beschäftigt sich seit einem Jahr mit der Nutzung von KI-Systemen im Management 4.0. Insbesondere habe ich mir hierzu zwei Themen ausgesucht:

  • Die Nutzung eines Neuronalen Netzwerkes für die Ermittlung von Persönlichkeitsmerkmalen aus beobachteten Verhaltensweisen.
  • Die Ermittlung des Grades der „Diltsglas-Organisation“ (wie oben geschildert) und des Collective Minds eines Teams aus auditiven Gesprächsprotokollen.

Den technologischen Durchstich für die erste Aufgabe konnte ich inzwischen erfolgreich abschließen. Ich bin also optimistisch, dass ich meine nächsten Blogbeiträge der Ausgestaltung dieser beiden Themen widmen werde. 

           

[1] The Nobel Committee for Physics (2021) For groundbreaking contributions to our understanding of complex physical systems, Scientific background on the Nobel Prize in Physics 2021.

[2] Parisi G (2008) The physical Meaning of Replica Symmetry Breaking, arXiv

[3] Wikipedia (2021) Physikalismus, https://de.wikipedia.org/wiki/Physikalismus_(Ontologie), zugegriffen am 29.10.2021

[4] Hopfield J.J. (1982) Neural networks and physical systems with emergent collective computational abilities, Proc. Nat. Acad. Sci. USA, Vol. 79 Biophysics

Metabetrachtungen: Zur Schnittmenge von Intuitivem Bogenschießen, Künstlicher Intelligenz und Management 4.0

Ende letzten Jahres habe ich einen WDR-Fernseh-Beitrag zur Bogenwerkstatt gesehen [1]. Dieser Beitrag hat meine verschüttete Kindheitsleidenschaft zum Bogenschießen wieder offengelegt. Seither übe ich mich mit großer Freude im sogenannten Intuitiven Bogenschießen [2]. Beim Intuitiven Bogenschießen bringt allein das „Körpergefühl und die Erfahrung des Schützen den Pfeil ins Ziel – rein intuitiv ohne Zieltechnik“. Intuitives Bogenschießen hat eine recht große Nähe zum japanischen Zen-Bogenschießen. – Das Buch des Philosophen Eugen Herrigel, der nach sechs! Jahren harten Übens (genüsslich zu lesen) seine Zen Bogenschieß-Prüfung ablegte gibt u.a. einen wunderbaren Eindruck von der Aussage „rein intuitiv ohne Zieltechnik“. – Die Fähigkeit sich an unterschiedliche Kontexte anzupassen, wird insbesondere beim 3D-Parcours Schießen im Gelände besonders herausgefordert.

Intuitives Bogenschießen wird auch als therapeutisches Bogenschießen in Kliniken eingesetzt. – Fokus, Adaption und Intuition sind zentrale Elemente des Intuitiven Bogenschießens. – Die begriffliche Nähe zum Management 4.0 ist offensichtlich. Ich werde später aufzeigen, dass auch eine Schnittmenge zur Künstlichen Intelligenz mittels Deep Learning gegeben ist.

Vor kurzem hatte ich die Gelegenheit und das Glück an einem dreitägigen Kurs zum Thema Deep Learning mittels Tensorflow teilzunehmen [4]. Tensorflow ist die von google u.a. über colab.research.google.com zur Verfügung gestellte Plattform für das Erstellen von Deep Learning Systemen der Künstlichen Intelligenz. – Das Eintauchen in diese und weitere Plattformen des Machine Learnings (ML) ist überwältigend: Es ist kein Programmieren mehr im mir bisher bekannten Sinne, sondern entspricht eher dem Design und Konfigurieren von Systemen auf sehr hohem Abstraktionsniveau. – Den erreichten (globalen) Fortschritt im ML konnte ich mir bisher in dieser nahezu „unendlichen Fülle“ nicht vorstellen. Deep Learning ist eine Form von technischer Selbstorganisation – das Design und die Konfiguration dienen der Ausgestaltung der Selbstorganisationsparameter des neuronalen Netzwerkes; und damit ist der Bezug zu Management 4.0 schon erkennbar.          

Vor einem Jahr haben wir in der Fachgruppe Agile Management eine Arbeitsgruppe ins Leben gerufen, die sich mit der Anwendung von Künstlicher Intelligenz im Projekt Management beschäftigt: Helge Nuhn hat kürzlich einen Übersichtsartikel zu Stand und Potential der Nutzung von Artificial Intelligence Systemen (AI Systemen) in temporären Organisationen und im Projekt Management erstellt [5].

In allen drei Bereichen – Intuitivem Bogenschießen, Künstlicher Intelligenz und Management 4.0 – ist Lernen das Schlüsselelement, um das System Mensch, das technische System Neuronales Netzwerk und das soziale System Team oder Organisation auf das Umfeld, also auf den jeweiligen Kontext, auszurichten.

In dem Standardwerk zu Machine Learning (ML) von Aurélien Géron charakterisiert er maschinelle Lernverfahren u.a. durch die Gegenüberstellung von Instanzbasiertem Lernen und Modellbasiertem Lernen: Instanzbasiertes Lernen ist dem Auswendiglernen sehr nahe. – Die Maschine lernt vordefinierte Objekt-Beispiele (Instanzen) einfach auswendig und wendet ein sogenanntes Ähnlichkeitsmaß zum Identifizieren von neuen Objekten (Instanzen) an. Ist die Ähnlichkeit hoch genug werden die neuen Objekte maschinell den vordefinierten Klassen zugeordnet. Instanzen können spezifische Kunden, Äpfel, eMails usw. sein. Das Ähnlichkeitsmaß wird über Regeln definiert und wird im „klassischen“ Sinne programmiert. – Die Regeln stellen eine äußerst einfache Form eines von außen (durch den Programmierer) vorgegebenen Modells dar. Das eigentliche Modellbasierte Lernen funktioniert jedoch völlig anders: Einem System werden Beispieldaten übergeben und das System entwickelt hieraus ein Modell und dieses Modell wird zur Vorhersage verwendet. Das Modellbasierte Lernen ist also dem wissenschaftlichen Vorgehen bei der Entwicklung von Erkenntnissen nicht unähnlich. Deep Learning lässt sich nach dem mehr oder weniger an Selbständigkeit beim AI-Lernen unterscheiden: Supervised Learning, Unsupervised Learning und Reinforcement Learning.

Zwischen Instanzbasiertem Lernen und Modellbasiertem Lernen liegt ein fundamentaler Unterschied. – Dies wird in dem Moment offensichtlich, wenn ich die Verbindung zum Management 4.0 und dem Lernen im einfachen oder komplizierten Kontext und dem Lernen im komplexen Kontext ziehe. Das Instanzbasierte Lernen ist das Lernen an Best Practice, also an Beispiel-Objekten wie einem Beispiel-Projekt oder an einem Beispiel-Verfahren. Das Ähnlichkeitsmaß ist in diesem Fall die Nähe zur eigenen Praxis: Der Lernende sucht nach einem Projekt, das möglichst zu seiner bisherigen Praxis passt. Dies kann heißen, dass Beispiele aus anderen Branchen nicht akzeptiert werden, dass nur dann das Beispiel passt, wenn der Lernende davon ausgeht, dass im Best Practice ein ähnliches Mindset vorliegt oder dass der WIP (Work-in-Progress) wie in der eigenen Organisation ähnlich groß ist, usw…. In jedem Fall wird der Projektkontext des Best Practices nur ungenügend abgebildet, es findet keine oder eine nur sehr geringe Abstraktionsleistung statt und die Übertragbarkeit ist deshalb mehr als fraglich.

Lernen im Management 4.0 ist Modellbasiertes Lernen. Instanzen sind nicht die Basis des Lernens, allenfalls um zu zeigen, dass man mit dem Modell sehr gut Probleme (Instanzen) lösen kann, die man vorher noch nie gesehen hat. – Falls das Modell jedoch nicht erfasst wird, erzeugt dies bei einem an Instanzbasiertes Lernen gewöhnten Menschen keine Erkenntnis: Da das Modell sich nicht erschließt, erschließt sich auch nicht die Lösung; Modell und Lösung sind unpraktisch.         

Mit dieser Erkenntnis sehr eng verbunden ist das sogenannte „Overfitting“ im ML: Man kann ein Neuronales Netz extrem gut mit einem gewaltig großen Datensatz (zum Beispiel Tier-Bildern) trainieren. – Die ermittelte Trefferrate ist fantastisch, so lange Bilder aus dem Trainingsdatensatz verwendet werden. – Trotzdem versagt das Netz bei einem bisher unbekannten Bild die Hundeart Spitz zu erkennen, und verortet den Spitz als Tyrannosaurus Rex. Der Kontext in dem der Spitz gezeigt wurde, war anders als bei den Trainingsdaten: Das AI-System konnte aufgrund der geringen Datenvariabiltät kein hinreichend abstraktes Modell ausbilden, um den Spitz in einem andersartigen Kontext zu erkennen. – Das Modell war sozusagen im Instanzbasierten Lernen hängen geblieben.

Beim Bogenschießen machte ich eine ähnliche Erfahrung im Selbsttraining: Ich stellte mich mit sehr vielen Schüssen (und ich meine hunderte, wenn nicht tausende Schüsse) auf einen bestimmten Kontext ein und die Trefferrate war sehr gut! – Eugen Herrigel beschreibt in seinem Buch wie er 4 Jahre aus einem Meter Distanz zum Ziel die Rituale des Zen-Bogenschießens einübt, um dann ad hoc mit einer 60 Meter Distanz konfrontiert zu werden, an der er über Monate kläglich scheiterte.

Bogenschießen unterliegt vielen, wahrscheinlich einigen hundert Parametern: Einer der offensichtlichen Kontext-Parameter ist die Entfernung zum Ziel. Änderte ich in der Anfangszeit die Entfernung ging meine Trefferrate deutlich runter. Ich hatte meine Intuition, mein Gehirn (d.h. mein neuronales Netzwerk), mittels Instanzbasiertem Lernen trainiert. Mit der Hinzunahme weiterer Entfernungen im 3D-Parcours wurde meine Trefferrate immer schlechter, um nicht zu sagen chaotischer. Mein Gehirn hat es aufgrund der vielen Parameter nicht geschafft, von allein eine Intuition, also ein mentales Modell, auszubilden, das mir zu einer besseren Trefferrate verhilft. Bei künstlichen Neuronalen Netzwerken hat man eine ähnliche Beobachtung gemacht: AI-Systeme können ebenfalls „Frustration“ ausbilden, sei es, dass sie in einem System-Zustand verharren oder „chaotische“ Reaktionen zeigen.  

Die Trefferrate wurde erst wieder deutlich besser als ich meiner Intuition auf die Sprünge half. Ich dachte mir ein einfaches Modell aus: Dieses Modell beruht auf der Erkenntnis, dass der Pfeilflug eine Wurfparabel beschreibt. Man spricht auch von ballistischem Schießen. Ist die Distanz gering (ca. 20 m) merkt man vielfach nichts von dieser Wurfparabel. – Vielfach bedeutet, dass die anderen Parameter, wie zum Beispiel Pfeilgewicht, Bogenstärke, usw. dies ermöglichen. Im Falle meines Bogens und meiner Pfeile wird die Wurfparabel ab 20 m immer stärker sichtbar. Das Modell lautet aktuell: Richte den Pfeil in einer geraden Linie auf das Ziel aus, auch wenn es 30 oder 40 Meter entfernt ist, schätze die Entfernung und hebe den Bogen in Abhängigkeit von der Entfernung leicht an. Leicht anheben bedeutet maximal 1-2 Winkelgrad. – Ein Winkelgrad kann durchaus im Ziel eine Abweichung von 50 cm oder mehr hervorrufen. – Also eine ziemliche Anforderung an Intuition und Motorik. Seit ich mit diesem Modell (das noch etwas umfangreicher ist, und weitere Parameter wie zum Beispiel das Pfeilgewicht berücksichtigt) schieße, hat sich die Trefferrate wieder deutlich verbessert und meine Adaptionsfähigkeit ist wesentlich gestiegen.      

Der Neurobiologe Henning Beck beschreibt in [7] wie unser Hang zur Ordnung im Lernen, also zum Instanzbasierten Block-Lernen uns „behindert“:

„Stellen Sie sich vor, Sie sind Lehrer an einer Kunstschule und wollen Ihren Kursteilnehmern den typischen Malstil von van Gogh, Monet und Cezanne vermitteln, wie gehen Sie vor? Oder umgedreht gefragt: Sie sollen für eine Prüfung lernen, was das Typische an den Bildern der drei Künstler ist, was würden Sie tun? Würden Sie sich Bilder der Maler anschauen? Ins Museum gehen, die Bilder vielleicht sogar nachmalen? …

…Eine Gruppe lernte genau nach obiger Blockabfertigung: Zunächst sah man sich eine Reihe von Bildern des ersten Künstlers an, machte dann eine kurze Pause, bevor die Bilder des Künstlers Nummer zwei folgten. Bei der anderen Gruppe machte man etwas anderes: Man zeigte die Bilder aller Künstler durcheinandergemischt, machte dann eine Pause und zeigte anschließend eine neue Runde durchmischter Bilder. Was für ein heilloses Durcheinander! So verliert man doch total den Überblick! …

…Das Ergebnis der Studie war jedoch erstaunlich: Ging es in dem anschließenden Test darum, ein zuvor gezeigtes Bild zu erkennen, dann schnitt die erste Gruppe, die blockweise gelernt hatte, besser ab. Ging es jedoch darum, ein neues, zuvor nicht gezeigtes Bild korrekt zuzuordnen, dann war Gruppe zwei mit den durchmischten Bildern besser. Denn diese Gruppe hatte die Bilder nicht nur auswendig gelernt, sondern auch das Typische der Malstile verstanden…

…Im obigen Malstilexperiment gaben drei Viertel der Teilnehmer an, das blockweise Lernen führe zu einem besseren Verständnis der Malstile – selbst nachdem man den finalen Test gemacht hatte, war die Mehrheit überzeugt, weiterhin blockweise lernen zu wollen.“

Ich habe Henning Beck hier so ausführlich zitiert, weil ich das „…Durchmischen von Lerninhalten, …das „Interleaving“…“ seit vielen Jahren in meinen Management 4.0 Trainings anwende und auch dort die Erfahrung mache, dass 50-75% der Teilnehmer das Block-Lernen bevorzugen. – Wie oben geschildert, geht blockweises Lernen mit dem Unvermögen einher, mentale Modelle zu erstellen, die sich auf neue Kontexte adaptiv einstellen. – Dies ist eine zentrale Fähigkeit um Komplexität zu meistern, also dem Handeln unter Unsicherheit und Unüberschaubarkeit.   

Meine Erfahrungen, sei es im Selbst-Training beim Bogenschießen, beim Erstellen von AI-Systemen oder in meinen Management 4.0 Trainings, zeigen, dass die Schnittmenge in diesen drei vordergründig disjunkten Bereichen keineswegs Null ist. – Die hier skizzierten Metabetrachtungen helfen, Einzel-Disziplinen besser zu verstehen, vernetzte Erkenntnisse zu gewinnen und Meta-Lernen anzuregen.

 

[1] Hörnchen D (2021) Die Bogenwerkstatt, https://www.die-bogenwerkstatt.de/, zugegriffen am 15.09.2021

[2] Wikipedia (2021) Traditionelles Bogenschießen, https://de.wikipedia.org/wiki/Traditionelles_Bogenschie%C3%9Fen, zugegriffen am 15.09.2021

[3] Herrigel E. (2010) Zen in der Kunst des Bogenschießens

[4] Zeigermann O (2021) Introduction Deep Learning to Deep Learning with Tensorflow 2, zeigermann.eu, embarc.de/oliver-zeigermann, ein Training der oose.de

[5] Nuhn H (2021) Organizing for temporality and supporting AI systems – a framework for applied AI and organization research, Lecture Notes in Informatics, GI e.V

[6] Géron A (2020) Praxiseinstieg Machine Learning mit Scikit-Learn, Keras und Tesnorflow, O’Reilly, 2. Auflage

[7] Beck H (2021) Die Crux mit der Ordnung, in managerSeminare 276, März 2021, https://www.managerseminare.de/ms_Artikel/Schlauer-lernen-Die-Crux-mit-der-Ordnung,281117, zugegriffen am 15.09.2021

Management 4.0 und Megatrends: Konnektivität, New Work, Wissenskultur

Vor Kurzem haben sich die Fachgruppenleiter der GPM Deutschen Gesellschaft für Projektmanagement getroffen. Ein wesentlicher Arbeitsschwerpunkt war die Auswirkungen der Megatrends für das Projektmanagement. Von den vom Zukunftsinstitut definierten Megatrends [1] werden insbesondere die Megatrends Konnektivität, New Work und Wissenskultur als wichtig für das Projektmanagement wahrgenommen.

Das Zukunftsinstitut schreibt hierzu [1]:

„Konnektivität ist der wirkungsmächtigste Megatrend unserer Zeit. Das Prinzip der Vernetzung dominiert den gesellschaftlichen Wandel und eröffnet ein neues Kapitel in der Evolution der Gesellschaft. Digitale Kommunikationstechnologien verändern unser Leben grundlegend, reprogrammieren soziokulturelle Codes und lassen neue Lebensstile und Verhaltensmuster entstehen. Um diesen fundamentalen Umbruch erfolgreich zu begleiten, brauchen Unternehmen und Individuen neue Netzwerkkompetenzen und ein ganzheitlich-systemisches Verständnis des digitalen Wandels.

…New Work beschreibt einen epochalen Umbruch, der mit der Sinnfrage beginnt und die Arbeitswelt von Grund auf umformt. Das Zeitalter der Kreativökonomie ist angebrochen – und es gilt Abschied zu nehmen von der rationalen Leistungsgesellschaft. New Work stellt die Potenzialentfaltung eines jeden einzelnen Menschen in den Mittelpunkt…

Der Megatrend Wissenskultur wirkt ungebrochen. Insbesondere das Zusammenspiel mit dem Megatrend Konnektivität verändert unser Wissen über die Welt und die Art und Weise, wie wir mit Informationen umgehen. …Komplexere, unvorhersehbare Anforderungen auf dem Arbeitsmarkt und neue, kollaborative Formen der Wissensaneignung verlagern zudem den Fokus: hinzu lebenslangem Lernen…“

Zur Wissenskultur gehört das Thema Lernen und hier insbesondere die durch die Digitalisierung noch zu erwartenden Veränderungen. Ich war deshalb im Januar auf der LearnTec in Karlsruhe [2]. Schwerpunkt auf dieser Konferenz und Messe ist das Thema Digitalisierung des Lernens. Zu den digitalen Techniken gehören Lernmanagementsysteme, Augmented Reality, Virtual Reality, Diverse Chat Bot Techniken, Sprachübersetzungstechniken sowie Spiele, die Lernen unterstützen (Gamification). Die LearnTec Messe hatte dieses Jahr in Karlsruhe zwei große Hallen belegt und nächstes Jahr soll alleine für den Bereich Schule eine Halle neu hinzukommen.

Auf der Konferenz war Artifical Intelligence das dominante Thema. – Bei den Ausstellern auf der Messe war es noch nicht wirklich ein Thema. Verschiedene Vortragende waren sich einig, dass AI based learning in den nächsten Jahren kommen wird. – Hierzu zählen dann auch Training Bots und Coaching Bots. Für eine Zusammenstellung von Unternehmen, die hier an vorderster Front sind, verweise ich auf [3]. Das Thema Smart Learning Environment geht noch einen Schritt weiter: Lernräume werden mit Sensoren und Actoren ausgestattet, die das Lernen über von digitalen Systemen wahrgenommene Verhaltensweisen ( z.B. längeres Verweilen bei einem Satz oder (Fremd-) Wort, Augenbewegungen, Hautfärbung oder ähnliches) monitoren, den Lernenden auf dieser Basis individuell führen und dem Lehrer, Trainer oder Coach über People Analytics Informationen Eingriffsmöglichkeiten geben.

Bosch arbeitet an entsprechenden Lernumgebungen und von der TU Kaiserlautern wurde ein sehr beeindruckender Prototyp für das multimediale Lernen im Physikunterricht vorgestellt. – Je nachdem was die Sensoren mittels KI ermitteln, stellen Actoren die Lerninhalte ad hoc zusammen. Der Lehrer oder Trainer kann eingreifen, muss es aber nicht. Zusätzlich werden Informationen zu typischen Lernmustern aller Lernenden bereitgestellt.

Mittels „Leuchtürmen“, sogenannten Beacons oder Beacon-ähnlicher Technologie können Räume weiter smart gemacht werden. – Dies erlaubt u.a. die individuelle oder projektspezifische Bereitstellung von Informationen sobald Räume betreten oder verlassen werden [4].

Interaktionsräume für agile Projektteams könnten mit ähnlichen Techniken entsprechend weiter „aufgerüstet“ werden. – Ähnliche Ideen hierzu sind im Bereich People Analytics schon relativ alt (man siehe hierzu meinen Blog [5]), erfreuen sich aber in Datenschutz-orientierten Gesellschaft bisher (noch!) weniger Freunde.- Auch hier werden sich vermutlich Smart Working Environments oder Smart Project Environments etablieren. – Spätestens hier muss klar werden, dass Datenschutzgesetze alleine nicht ausreichen, sondern eine ganzheitliche Ethik gefordert ist, die nicht auf „Verliebtsein in Innovation, Erfolg und Geld“ ausgerichtet ist.

Der Jobfuturomat des Instituts für Arbeitsmarkt- und Berufsforschung der Bundesagentur für Arbeit [6] weist für Projektleiter einen Digitalisierungsanteil von ca. 33 % aus, für Manager einen Anteil von 25%. Details der Analyse sind leider nicht transparent verfügbar. – So wird nicht wirklich klar, ob damit z.B. 33% der Projektleiteraktivitäten durch die Digitalisierung ersetzt wird oder 33% durch die Digitalisierung verändert wird. – Es ist von Automatisierung die Rede.
Mediatoren, Verhaltenstrainer/Kommunikationstrainer sollen hiernach einen Digitalisierungsgrad von 0% haben. – Die LearnTec lässt auch für diese letzte Berufsgruppe vermuten, dass sich das Berufsbild auch dieser Gruppe durch die Digitalisierung völlig verändern wird und enorme Möglichkeiten der Machtausübung damit verbunden sind.

Damit die Digitalisierung, wie Scobel sagt, nicht zu einer weiteren Entfremdung führt [7] oder wichtige Techniken der Selbstführung, wie diejenige der Achtsamkeit oder Meditation missbraucht werden [8], ist es notwendig, die Megatrends durch eine tiefgreifende Werteorientierung oder Ethik zu regulieren. Unreguliert führen sie zu vermeintlich schönen Hüllen: New Work ist nämlich nicht in erster Linie die Gestaltung von neuen mobilen, smarten oder work-life-balance Arbeitsumgebung, sondern wie wir im Management 4.0 sagen, eine an den menschlichen Grundbedürfnissen ausgerichtet Arbeit, bei der die Sinnfrage in jeder Hinsicht den nachhaltigen Bezugsrahmen setzt. – Im vorherigen Blog habe ich hierfür den Begriff Glück verwendet. – Unternehmen, die die Systemparameter des Unternehmens nicht so ausrichten, dass sie damit aktiv zum Glück der Mitarbeiter beitragen, praktizieren kein New Work [9,10].

Deshalb praktizieren Fluide Organisationen 4.0 Selbstorganisation und! wollen sich bewusst in Richtung einer Ethik mit türkisenen value-Memen entwickeln (d.h. insbesondere: ganzheitlich, nachhaltig, menschlich, naturverbunden). Man siehe hierzu meinem Blog [11] und auch den Beitrag „Interaction Patterns for the Digital Transformation“ in [9].

Schon Marx hat die Mechanismen der Selbstorganisation erkannt [12] und diagnostiziert, dass diese Mechanismen im 19ten Jahrhundert nicht an den menschlichen Grundbedürfnissen ausgerichtet waren. An verschiedenen Stellen im Blog habe ich darauf hingewiesen, dass die Selbstorganisation ein universelles Phänomen ist und damit nicht zwischen Gut oder Böse unterscheidet. Wie die Achtsamkeit auch, benötigt die Selbstorganisation eine Ethik.- Es ist also wichtig, zwischen der Selbstorganisation und einem ethischen Rahmen zu unterscheiden. Wenn wir von Selbstorganisation 4.0 sprechen, dann meinen wir eine Selbstorganisation, die auf den universellen Prinzipien beruht und die türkisenen value-Meme lebt. Diese Ethik wird umso wichtiger, als die Selbstorganisation mittels smarter Techniken unterstützt wird!

Wie ich im Blog über Davos [13] skizziert habe, sind meines Erachtens die Top-Führungskräfte der europäischen Unternehmen und Politik sowohl von dem Verständnis der Selbstorganisation als auch dem einer türkisenen Ethik sehr weit entfernt. Und damit schließt sich der Kreis wieder: Die Potentiale, die sich durch die Megatrends Konnektivität, New Work und Wissenskultur ergeben, können nicht gehoben werden. – Es besteht vielmehr das Risiko, dass die Megatrends unter diesen Bedingungen zur Gefahr für den gesellschaftlichen Zusammenhalt werden.   

 

[1] Zukunftsinstitut (2020) https://www.zukunftsinstitut.de/dossier/megatrends/, zugegriffen am 27.02.2020

[2] Leantec (2020) https://www.learntec.de/de/, zugegriffen am 27.02.2020

[3] AI in education (2020) https://builtin.com/artificial-intelligence/ai-in-education, zugegriffen am 27.02.2020

[4] Beacon (2020) https://de.ryte.com/wiki/Beacon, zugegriffen am 27.02.2020

[5] Oswald Alfred (2019) #PAFOWLondon – People Analytics & Future of Work – Deutschland, wo bist Du?, https://agilemanagement40.com/pafowlondon-people-analytics-future-of-work-deutschland-wo-bist-du

[6] Institut für Arbeitsmarkt- und Berufsforschung der Bundesagentur für Arbeit (2020) https://job-futuromat.iab.de/, zugegriffen am 27.02.2020

[7] Scobel Gert (2020) Marx – wie sieht Entfremdung heute aus?, https://www.youtube.com/watch?v=FWhszTgMdec, zugegriffen am 27.02.2020

[8] Scobel Gert (2020) Achtsamkeit kann auch gefährlich sein, https://www.youtube.com/watch?v=QukUtDNeQ1I, zugegriffen am 27.02.2020

[9] Oswald A, Müller (Hrsg.) (2019) Management 4.0 – Handbook for Agile Practices, Release 3, BoD Verlag, Norderstedt

[10] Lutze Matthias, Schaller Philipp D., Wüthrich Hans A. (2019) New Work, Zurück in die Zukunft der Motivation, Zeitschrift Führung +Organisation 6/2019

[11] Oswald Alfred (2019) Projekte neu gedacht: Entwicklungsstufen, Selbstorganisation und Co-Evolution, https://agilemanagement40.com/projekte-neu-gedacht-entwicklungsstufen-selbstorganisation-und-co-evolution, zugegriffen am 27.02.2020

[12] Oswald Alfred (2018) Karl Marx und die Theorie der Selbstorganisation, https://agilemanagement40.com/karl-marx-und-die-theorie-der-selbstorganisation

[13] Oswald Alfred (2020) Vom Davos-Kindergarten der Führung, oder…Vom Systemwandel und der globalen Revolution der Führung!, https://agilemanagement40.com/vom-davos-kindergarten-der-fuehrung-odervom-systemwandel-und-der-globalen-revolution-der-fuehrung, zugegriffen am 27.02.2020